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Abstract: Data reduction has become increasingly important in storage systems due to the explosive

growth of digital data in the world that has ushered in the big data era. In this paper, we present

DARE, a Deduplication-Aware Resemblance detection and Elimination scheme for compressing

backup datasets that effectively combines data deduplication and delta compression to achieve high

data reduction efficiency at low overhead. The main idea behind DARE is to employ a scheme, call

Duplicate-Adjacency based Resemblance Detection (DupAdj), by considering any two data chunks

to be similar (i.e., candidates for delta compression) if their respective adjacent data chunks are

found to be duplicate in a deduplication system, and then further enhance the resemblance detection

efficiency by an improved super-feature approach. Our experimental results based on real-world and

synthetic backup datasets show that DARE achieves an additional data reduction by a factor of more

than 2 (2X) on top of deduplication with very low overhead while nearly doubling the data restore

performance of deduplication-only systems by supplementing delta compression to deduplication.

1 Introduction

Data deduplication is a dictionary based data reduction approach popular in the backup/archiving

storage area due to its demonstrated ability to effectively to compress backup/archiving datasets by

a factor of 4-40X [1, 2]. In general, a chunk-level data deduplication scheme splits data blocks of

a data stream (e.g., backup files and databases) into multiple data chunks of average size 8K or 4K

with each being uniquely identified and duplicate-detected by a secure SHA-1 or MD5 hash sig-

nature (also called a fingerprint) [3, 4, 5, 1]. This secure fingerprint-based deduplication technique

eliminates redundancy at the chunk or file level and thus scales better than the traditional LZ77 and

Huffman coding based GZ compression [6, 4].

Delta compression, however, has been gaining increasing attention in recent years for its ability

to remove redundancy among non-duplicate but very similar data files and chunks, for which the

data deduplication technology often fails to identify and eliminate [7, 2]. For example, if chunk A2

is similar to chunk A1 (the base-chunk), the delta compression approach calculates and then only

stores the differences (delta Δ1,2) and the mapping information between A2 and A1 [8]. Thus, it is

considered a promising technique to effectively complement and supplement the fingerprint-based

deduplication approaches by detecting and compressing similar data missed by the latter.

In this paper, we propose DARE, a low-overhead Deduplication-Aware Resemblance detection

and Elimination scheme that effectively combines data deduplication and delta compression to

achieve high data reduction efficiency at low overhead. The main contributions include:

• A “DupAdj” approach is proposed to exploit existing duplicate-adjacency information after

deduplication to detect similar data chunks for delta compression. Specifically, due to locality

of similar data in backup datasets, the non-duplicate chunks that are adjacent to the duplicate
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Table 1: Duplicate detection vs. resemblance detection for data reduction.

Duplicate Detection Resemblance Detection

Objects Duplicate data Similar data

Granularity Chunk-level Byte-level

Representative Methods Secure-Fingerprint based Deduplication Super-Feature based Delta Compression

Scalability Strong Weak

Representative Systems LBFS [3], Venti[9], DDFS [5] REBL[7], DERD[10], SIDC[2]

ones are considered good delta compression candidates for further data reduction.

• A theoretical and empirical study of the traditional super-feature approach is conducted, which

suggests that an improved resemblance detection for further delta compression is possible when

the aforementioned existing duplicate-adjacency information is lacking or limited.

• An investigation into the restoration of deduplicated and delta compressed backup data sug-

gests that delta compression has the potential to improve the data-restore performance of

deduplication-only systems by further removing redundancy after deduplication and thus en-

larging the logical space of the restoration cache.

• Our experimental evaluation results, based on real-world and synthetic backup datasets, show

that DARE only consumes about 1/4 and 1/2 respectively of the computation and indexing

overhead required by the traditional super-feature approach for resemblance detection while

achieving a superior data reduction performance.

The rest of the paper is organized as follows. Section 2 presents the background for this work.

The architecture, key data structures, and data reduction schemes of DARE are described in Section

3. We present and discuss the experimental evaluation of the DARE prototype in Section 4. Section

5 draws conclusions and provides directions for future work.

2 Related Work

Data deduplication is gaining increasing traction in data-intensive storage systems as one of the

most efficient data reduction approaches in recent years. Fingerprint-based deduplication techniques

eliminate duplicate chunks by checking their secure fingerprints (i.e., SHA-1/SHA-256 signatures),

which has been widely used in commercial backup and archiving storage systems [5, 1].

One of the main challenges facing data deduplication is how to maximally detect and eliminate

data redundancy in storage systems at low overhead. In order to find more redundant data, the

Content-Defined Chunking (CDC) approach was proposed in LBFS to find the proper cut-point of

each chunk in the files and address the boundary-shift problem [3].

Resemblance detection with delta compression [7, 10, 11], as another approach to data reduction

in storage systems, was proposed more than ten years ago but was subsequently overshadowed by

fingerprint-based deduplication [5, 1] due to the former’s poor scalability. Table 1 compares these

two data reduction approaches. Resemblance detection detects redundancy among similar data at

the byte level while duplicate detection finds totally identical data at the chunk level, which makes

the latter much more scalable than the former in large-scale storage systems.

REBL[7] and DERD [10] are typical super-feature based resemblance detection approaches for

data reduction. They compute the features of the data stream (e.g., Rabin Fingerprints [12]) and

group features into super-features to capture the resemblance of data and then delta compress these

data. All these approaches require high computation and indexing overhead for resemblance de-

tection. As a result, the simpler and faster deduplication method has become a more popular data

reduction technology in the recent five years [1].

Nevertheless, resemblance detection is gaining increasing traction in storage systems because of

its ability to capture and eliminate data redundancy among similar but non-duplicate data chunks,
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Figure 1: The data reduction workflow of DARE, showing an example of resemblance detection for delta compression

first by the DupAdj approach and then by the super-feature approach. ‘D’, ‘S’ and ‘N’ here refer to a duplicate chunk, a

similar chunk and a chunk that is neither duplicate nor similar, respectively.

which effectively complements and supplements fingerprint-based deduplication. Difference En-

gine [13] and I-CASH [14] make full use of the delta compression technology to eliminate redun-

dancy in memory pages and SSD caches respectively. Shilane et al. [2] proposed a stream-informed

delta compression approach to reducing similar data transmission and thus accelerating data repli-

cation in a WAN environment. This approach is also super-feature based and complements dedupli-

cation by only detecting resemblance among non-duplicate chunks in the cache that preserves the

backup stream locality. It avoids the costly global indexing, at a limited loss of data reduction.

3 Design and Implementation
3.1 An Overview of the DARE Data Reduction Approach

DARE is designed to improve resemblance detection for additional data reduction in deduplication-

based backup/archiving storage systems. Figure 1 shows a detailed case of the workflow of the

DARE system. For an incoming backup stream, DARE goes through the following four key steps:

1. Duplicate Detection. The data stream is first chunked by the CDC approach [3], fingerprinted

by SHA-1, duplicate-detected, and then grouped into container of sequential chunks to preserve

the backup-stream locality [5].

2. Resemblance Detection. The DupAdj resemblance detection module in DARE first detects

duplicate-adjacent chunks in the containers formed in Step (1) (see Section 3.2). After that,

DARE’s improved super-feature module further detects similar chunks in the remaining non-

duplicate and non-similar chunks that may have been missed by the DupAdj detection module

when the duplicate-adjacency information is lacking or weak (see Section 3.3).

3. Delta Compression. For each of the resembling chunks detected in Step (2), DARE reads

its base-chunk, then delta encodes their differences by the Xdelta algorithm [8]. In order to

reduce the number of disk reads, an LRU and locality-preserved cache is implemented here to

prefetch the base-chunks in the form of locality-preserved containers.

4. Storage Management. The data NOT reduced, i.e., non-similar or delta chunks, will be stored

as containers into the disk. The file mapping information among the duplicate chunks, resem-

bling chunks, and non-similar chunks will also be recorded as the file recipes to facilitate future

data restore operations in DARE.

For the restore operation, DARE will first read the referenced file recipes and then read the du-

plicate and non-similar chunks one by one from the referenced containers on disk according to the

mapping information in the file recipes. For the resembling chunks, DARE needs to read both their

delta data and base-chunks and then delta decode them.
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Figure 2: A conceptual illustration of the duplicate adjacency. The non-duplicate chunks adjacent to duplicate ones are

considered potentially similar and thus good delta compression candidates.

3.2 DupAdj: Duplicate-Adjacency based Resemblance Detection

As a salient feature of DARE, the DupAdj approach detects resemblance by exploiting the existing

duplicate-adjacency information of a deduplication system. This is based on our observation that the

modified chunks may be very similar to their previous versions in a backup system while unmodified

chunks will remain duplicate and are easily identified by the deduplication process.

Figure 2 illustrates a case of duplicate data chunks and their immediate non-duplicate neighbors.

DARE records the backup-stream locality of chunk sequence by a doubly-linked list, which allows

an efficient search of the duplicate-adjacent chunks for resemblance detection by traversing to prior

or next chunks on the list, as shown in Figure 2. When the DupAdj Detection module of DARE

processes an input file, it will traverse all the chunks by the aforementioned doubly-linked list to

find the already duplicate-detected chunks. If chunk Em of the input file E was detected to be a

duplicate of chunk Bn of file B, DARE will traverse the doubly-linked list of Bn in both directions

(e.g., Em+1 & Bn+1 and Em−1 & Bn−1) in search of potentially similar chunk pairs between files

E and B, until a dissimilar chunk or an already detected duplicate or similar chunk is found.

Since the DupAdj detection approach only adds a doubly-linked list to an existing deduplication

system, DARE avoids the computation and indexing overhead of the conventional super-feature ap-

proach for resemblance detection in data reduction systems. In case where the duplicate-adjacency

information is lacking or limited, DARE uses an improved super-feature approach to further detect-

ing and eliminating resemblance as discussed in the next subsection.

3.3 Theoretical Analysis of Super-Feature based Resemblance Detection

As mentioned in Section 2, traditional super-feature approaches generate features by Rabin finger-

prints and group these features into super-features to detect resemblance for data reduction [7, 10].

For example, Featurei of a chunk (length = N) is uniquely generated with a randomly pre-defined

value pair mi & ai and N Rabin fingerprints (as used in Content-Defined Chunking [3]) as follows:

Featurei = MaxNj=1{(mi ∗Rabinj + ai)mod 232} (1)

A super-feature of this chunk, SFeaturex, can then be calculated by several features as follows:

SFeaturex = Rabin(Featurex∗k, ..., Featurex∗k+k−1) (2)

For example, to generate two super-features with k=4 features each, we must first generate 8

features, namely, features 0...3 for SFeature1 and features 4...7 for SFeature2. For similar chunks

that differ only in a tiny fraction of bytes, most of their features will be identical due to the random

distribution of the chunk’s maximal-feature positions [15]. Thus two data chunks can be considered

very similar if any one of their super-features matches. The state-of-the-art studies [7, 2] recommend
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the use of 4 or more features to generate a super-feature to minimize false positives of resemblance

detection for delta compression.

However, our theoretical analysis and experimental observations suggest that the probability of

false positives resulting from feature collision is extremely low but increasing the number of features

per super-feature actually decreases the efficiency of resemblance detection. First, the false positives

of 64-bit Rabin fingerprints tend to be very low as discussed in previous studies [12, 16]. This means

that two chunks will have the same content of a hashing region (32 or 48 bytes) with a very high

probability if they have the same Rabin fingerprint. Next, the probability of two similar chunks

having the same feature is highly dependent upon their similarity degree according to Broder’s

theorem [17]. The less similar two data chunks are to each other, the smaller the probability of

them having the same feature. Thus, the probability of two data chunks S1 and S2 being detected

as resembling to each other by N features can be computed as follows.

Pr[
N⋂
i=1

Maxi(H(S1)) = Maxi(H(S2))] = {|S1 ∩ S2|
|S1 ∪ S2|}

N = γN (3)

This probability is clearly decreasing as a function of the number of features used in a super-

feature, as indicated by the above probability expression. Nevertheless, all recent studies on delta

compression suggest to increase the number of super-features [2]. If any one of the super-features of

two data chunks matches, the two chunks are considered similar to each other. Thus, the probability

of resemblance detection, expressed as 1 − (1 − γN )M , can be increased by the number of super-

features, M.

For simplicity, assume that the similarity degree γ follows a uniform distribution in the range [0,

1] (note that the actual distribution may be much more complicated in real workloads), the expected

value of resemblance detection can be expressed as a function of the number of features per super-

feature and the number of super-features under the aforementioned assumption as:

∫ 1

0
x(1− (1− xN )M )dx =

M∑
i=1

Ci
M (−1)i+1 1

N ∗ i+ 2
(4)

This expression of resemblance detection suggests that the larger the number N of features used

in obtaining a super-feature is, the less capable the super-feature is of resemblance detection. On

the other hand, the larger the number M of super-features is, the more resemblance can be detected

and the more redundancy can be eliminated.

Thus, DARE employs an improved super-feature approach with fewer features per super-feature

to effectively complementing the DupAdj resemblance detection as discussed in Section 3.1. And

our experimental results suggest that two features per super-feature appear to hit the “sweet spot”

of resemblance detection in deduplication systems in terms of cost effectiveness.

4 Performance Evaluation

4.1 Experimental Setup

Platform of the DARE Prototype. We have implemented a prototype of DARE and tested it on the

Ubuntu 12.04 operating system running on a quad-core Xeon E5606 processor at 2.13 GHz, with

a 16GB RAM, a 14TB RAID6 disk array that consists of sixteen 1TB disks, and a 120GB SSD of

KINGSTON SVP200S37A120G.

Configurations for Data Reduction. DARE employs the widely used Rabin algorithm [12, 16]

and SHA-1 hash function [5] respectively for the chunking and fingerprinting processes in data

deduplication, with an average chunk size of 8KB. For the resemblance detection, DARE adopts
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Table 2: Workload characteristics of the six real-world and two synthetic backup datasets.

Datasets Emacs GDB Glibc SciLab GCC Linux Freq Less

versions 8 10 35 10 20 40 20 30

Size 1.15 GB 1.37 GB 3.18 GB 4.94 GB 8.91 GB 16.8 GB 857 GB 1372 GB

(a) Compression vs. features and SFs (b) Throughput vs. features (c) Data reduction vs. avg. chunk size

Figure 3: An empirical study of the super-feature based resemblance detection approach for data reduction. (a) Data

reduction of the super-feature approach as a function of the number N of features per super-feature and the number M of

super-features (shaded segments on each bar). (b) Data-reduction throughput of the four super-feature based approaches

as a function of the number N of features per super-feature. (c) Data reduction as a function of the average chunk size,

by deduplication and the 2-features-per-SF (SF-2F) and the 4-features-per-SF (SF-4F). Total-2F and Total-4F refer to

Dedupe + SF-2F and Dedupe + SF-4F respectively. Note that results of subfigures (a) and (c) are evaluated on the GCC

dataset and results of other datasets are similar to GCC thus are omitted due to space limit.

a CDC sliding window size of 48 bytes to generate features and uses the Xdelta algorithm [8] to

compress the detected similar chunks.

Datasets. Six well-known open-source projects representing typical backup workloads of dedupli-

cation and resemblance detection are used in this evaluation as shown in Table 2. These datasets

consist of large tarred files representing sets of source code files or objects concatenated together

by backup software [1, 2]. In order to assess the scalability of DARE, we generate two larger syn-

thetic backup datasets according to the principles of synthesizing datasets outlined in recent studies

[18, 19]. We obtain the first version of the datasets from our research group of 16 users with 192K

files and totaling 42GB, mutate the data by the operations of “modify”, “delete” and “new” for

20%, 1%, and 1% of the files respectively in the “Freq” dataset and 10%, 0.5%, and 0.5% of the

files respectively in the “Less” dataset, and then concatenate individual files to the tarred files. The

file modifications are also applied in the beginning, middle, and end of the files as suggested in [18].

4.2 An Empirical Study of the Super-Feature Approach

We first examine the impact of the number of features per SF and the number of SFs used in resem-

blance detection via an evaluation driven by a real-world dataset. In Figure 3(a), we plot the trend

of data reduction of the traditional super-feature based approach as a function of the number N of

features per SF and the number M of SFs. We find a general tendency of redundancy elimination

being a decreasing function of ‘N’ and an increasing function of ‘M’, which is consistent with the

results of our mathematical analysis presented in Section 3.3. That is, the more SFs are used, the

more resemblance can be exposed to eliminate more redundancy. On the other hand, the more fea-

tures used in generating each SF, the less redundancy will be eliminated, because the probability of

more features in an SF being identical is smaller than that of fewer features in an SF.

To evaluate the overall performance impact of the number of features per SF, we plot in Figure

3(b) the data-reduction throughput of the super-feature based approaches running on the RAID as

a function of the number of features per SF. We find that the one-feature-per-SF approach has a

lower throughput than the two- or three-features-per-SF approaches where the highest throughputs
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Table 3: A comparison among Deduplication, DupAdj, DARE, SF-2F, and SF-4F approaches in the data reduction

measure under six real-world datasets, and both tarred and untarred versions for a total of 12 backup datasets.

Datasets
Tarred UnTarred

Emacs GDB Glibc SciLab GCC Linux Emacs GDB Glibc SciLab GCC Linux

Versions 8 10 35 10 20 40 8 10 35 10 20 40

Dedupe 37.1% 48.7% 52.2% 56.9% 39.1% 40.9% 43.5% 70.6% 87.9% 77.5% 83.5% 96.7%

DupAdj 32.1% 33.5% 29.2% 19.5% 38.2% 53.4% 29.6% 10.9% 2.9% 5.2% 7.2% 0.7%

DARE 41.0% 40.8% 36.9% 25.2% 46.7% 54.1% 37.7% 18.2% 7.3% 10.4% 9.9% 1.0%

SF-2F 33.7% 36.4% 35.3% 22.6% 45.2% 54.4% 31.7% 16.5% 6.6% 9.6% 9.1% 0.9%

SF-4F 28.2% 33.4% 30.4% 18.8% 40.6% 53.5% 28.0% 14.2% 5.7% 8.1% 7.3% 0.6%

(a) Computation Overhead (b) Indexing Overhead

Figure 4: A comparison among DARE, SF-2F, and SF-4F in terms of computation and memory (indexing) overhead.

are achieved. This is because the former detects more similar chunks than the latter and thus in-

duces more random I/Os in reading the base-chunks of the resemblance-detected chunks for delta

compression. On the other hand, while approaches based on four or more features per super-

feature detect less resemblance, they incur higher computation latency (overhead), which lowers

the throughput.

Figure 3(c) shows the data reduction results of deduplication and delta compression approaches

as a function of the average chunk size. It demonstrates that delta compression is very efficient in

supplementing deduplication for data reduction. The larger the average chunk size is, the less dupli-

cate data are detected. But the resemblance detection approach can detect almost all the redundant

data (e.g., similar data) that deduplication fails to identify, regardless of the average chunk size.

4.3 Deduplication-Aware Resemblance Detection
In this subsection, we evaluate DARE’s resemblance detection and elimination schemes and com-

pare DARE with the super-feature-only approaches based on 3 SFs with two-features per SF (SF-2F)

and 3 SFs with four-features per SF (SF-4F, the same configuration as SIDC [2]). Note that DARE’s

resemblance detection here is thus DupAdj supplemented by SF-2F, where SF-2F is applied only to

chunks that DupAdj has failed to detect as similar, as discussed in Section 3.3.

Table 3 shows the additional data reduction on top of the conventional deduplication (Dedupe)

achieved by the four resemblance detection schemes, DupAdj, DARE, SF-2F, and SF-4F, on the six

real-world backup datasets (both tarred and untarred). Generally, the DupAdj approach achieves a

resemblance-detection efficiency similar to the SF-4F approach and DARE detects about 2-6% and

3-10% more redundancy than the SF-2F and SF-4F approaches respectively. As indicated in Figure

3(a) and discussed in Section 4.2, SF-2F is more effective than SF-4F for resemblance detection.

Thus DARE detects the most resemblance by combining the DupAdj and SF-2F resemblance de-

tection approaches. In fact, our evaluation results suggest that the average similarity degree of the

DupAdj-detected chunks is 0.895 while that of the SF-2F- and SF-4F-detected chunks are 0.892 and

0.934 on the above six datasets, which demonstrates that DupAdj is very effective and efficient in

detecting resemblance among the post-deduplication chunks with a very low false-positive rate.

Figure 4 shows the computation and indexing overhead incurred by the three resemblance detec-
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Table 4: A comparison among the duplicate-detection and resemblance-detection approaches in terms of data reduction

efficiency on the two synthesized larger backup datasets Freq and Less. The “+” (“*”) sign in front of a reduction

percentage (factor) indicates the “additional” post-deduplication data reduction.

Datasets Freq Less

Exact Dedupe 84.6% 6.5X 91.2% 11.4X

SiLo Dedupe [20] 84.4% 6.4X 91.2% 11.4X

Cached Index of DARE (DupAdj+SF-2F) +9.28% *2.5X +5.01% *2.3X

Cached Index of SF-2F +7.01% *1.8X +4.31% *2.0X

Cached Index of SF-4F (SIDC [2]) +5.32% *1.5X +3.27% *1.6X

Full Index of SF-2F +9.61% *2.6X +5.04% *2.3X

tion schemes. Obviously, SF-4F, which computes more features but detects less resemblance, con-

sumes the most amounts of computation and indexing resources for resemblance detection. DARE

uses the same super-feature parameters as SF-2F but incurs only half of the computation and index-

ing overheads of the SF-2F approach because of DupAdj’s very effective pre-screening of similar

chunks by exploiting existing duplicate-adjacency information after data deduplication.

4.4 Scalability of DARE Data Reduction

In order to better evaluate the scalability of DARE on larger backup datasets, we have implemented

the schemes of Stream-Informed Delta Compression (SIDC) [2] in SiLo [20], a memory-efficient

near-exact deduplication system that exploits the backup-stream similarity and locality. As intro-

duced in Section 2.1, SIDC only detects resemblance in the backup-stream locality-preserved cache

that can reduce the indexing overhead of SFs and scales well in large-scale deduplication system.

Thus we employ their method to assess the scalability of different resemblance detection schemes

and implement SiLo with a 20MB locality cache (similar to SIDC [2]) with a segment size of 1MB.

The stream-informed approaches are denoted by the “Cached/Cac.” prefix in Table 4 and Figure 5.

The first column under a dataset (Freq or Less) in Table 4 shows the percentages of data reduc-

tion and the second column shows the data reduction factor (the ratio of before/after data reduction).

Since SiLo achieves nearly 99% deduplication efficiency of the exact deduplication (i.e., full index

in memory) while requiring substantially less memory overhead (about 1/250 of the exact dedupli-

cation approach) for fingerprint indexing [20], we only discuss the results of resemblance detection

after SiLo’s deduplication here in Table 4.

As shown in Table 4, resemblance detection further reduces the storage space, after the deduplica-

tion process, by a factor of about 2.5, meaning that we can save about 60% of the post-deduplication

storage space by resemblance-detecting post-deduplication chunks. DARE achieves a superior data

reduction efficiency on both datasets while the cached SF-2F and SF-4F schemes detect less resem-

blance, which is consistent with the results on our real-world datasets summarized in Table 3. Table

4 also shows that the cached SF-2F and SF-4F schemes fail to detect a noticeable amount of resem-

blance due to the sometimes weak or lack thereof locality in the backup stream as the limitations of

the stream-informed cache approach [2].

To further understand the scalability of DARE, Figure 5 shows the percentages of resemblance

detected by its DupAdj detection and by the SF-2F and SF-4F approaches showing the individual

contributions by the 1st SF, the 2nd SF, and the 3rd SF, on the two synthesized datasets. DupAdj

is very effective and efficient in detecting resemblance in the deduplication system with abundant

duplicate-adjacency information (i.e., dedupe factor > 2), leaving DARE’s improved super-feature

approach very little (smaller than 1%), if any, additional resemblance to detect (see the DARE bars).

Figure 6 shows that DARE achieves the highest throughputs among all the approaches compared

running on both RAID-structured HDDs and the SSD. Cached SF-4F has the lowest throughput
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Figure 5: Percentages of data reduced by Du-

pAdj, and the 1st SF, 2nd SF, 3rd SF of the

super-feature approach respectively in the stream-

informed DARE, SF-2F, and SF-4F approaches.

(a) Throughput on RAID (b) Throughput on SSD

Figure 6: Throughputs of four resemblance detection enhanced

data reduction approaches on the two synthesized datasets.

(a) Restoration throughput (b) Containers read

Figure 7: Data-restore performance versus backup version

on the Linux dataset with an LRU cache of size 256MB.

(a) Restoration throughput (b) Containers read

Figure 8: Data-restore performance versus backup version

on the Less dataset with an LRU cache of size 512MB.

because it incurs the largest computation overhead for resemblance detection. It is noteworthy that

DARE’s average data-reduction throughput on RAID, at 50MB/s, is much lower than DARE’s aver-

age throughput of 85MB/s on SSD. The root cause of RAID’s inferior data-reduction performance

(in Figure 6(a)) mainly lies in the random reads of the base-chunks. In general, DARE achieves

superior performance of both throughput and data reduction efficiency among all the resemblance

detection approaches as indicated in Figure 6 and Table 4.

4.5 Restoration Performance

Intuitively, delta compression should slow down the data-restore performance of a data-reduction

system since it needs to restore the resembling chunks by two reads, one for the delta data and the

other for the base-chunk, and then delta decode them. But in our evaluation of the restore operations

for resembling chunks, we find that the speed of delta decode (i.e., Xdelta [8]) tends to be very fast,

about 1GB/s in the DARE system. Another interesting observation is that, for a restoration cache

of a given size with a delta chunk Δi,k and its based chunk Ci, DARE actually caches more logical

content of the two chunks Ci and Ck than a deduplication-only system and thus improves the data-

restore performance by virtual of the enlarged restoration cache due to delta compression.

Figures 7(a) and 8(a) show that DARE on average doubles the data-restore speed of the

deduplication-only system (both running on the RAID). Figures 7(b) and 8(b) clearly show that the

reason lies in the fact that DARE reads half as many containers for restoration as the deduplication-

only system. The superior data-restore performance of SF-2F and SF-4F to the deduplication-

only system is attributed to their data reduction efficiency (see Tables 3 and 4). Since the restore-

performance for the other six datasets is similar to and consistent with that of the Less dataset, they

are omitted to save space. The sudden increase in the data-restore performance of the deduplication-

only approach at the backup version 17 (Figure 8(a)), we observe, is due to the fact that most of the

backed-up sources targeted for restoration are from the current and recent backups and thus have

fewer random reads for restoration.
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5 Conclusion and Future Work

In this paper, we present DARE, a deduplication-aware, low-overhead resemblance detection and

elimination scheme for delta compression on the top of deduplication on backup datasets. DARE

uses a novel resemblance detection approach, DupAdj, which exploits the duplicate-adjacency in-

formation for efficient resemblance detection in existing deduplication systems, and employs an

improved super-feature approach to further detecting resemblance when the duplicate-adjacency

information is lacking or limited.

Our preliminary results on the data-restore performance suggest that supplementing delta com-

pression to deduplication can effectively enlarge the logical space of the restoration cache, but the

data fragmentation in data reduction systems remains a serious problem [19]. We plan to further

study and improve the data-restore performance of storage systems based on deduplication and delta

compression in our future work.
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