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Abstract—Data deduplication has gained increasing attention and popularity as a space-efficient approach in backup storage

systems. One of the main challenges for centralized data deduplication is the scalability of fingerprint-index search. In this paper, we

propose SiLo, a near-exact and scalable deduplication system that effectively and complementarily exploits similarity and locality of

data streams to achieve high duplicate elimination, throughput, and well balanced load at extremely low RAM overhead. The main idea

behind SiLo is to expose and exploit more similarity by grouping strongly correlated small files into a segment and segmenting large

files, and to leverage the locality in the data stream by grouping contiguous segments into blocks to capture similar and duplicate data

missed by the probabilistic similarity detection. SiLo also employs a locality based stateless routing algorithm to parallelize and

distribute data blocks to multiple backup nodes. By judiciously enhancing similarity through the exploitation of locality and vice versa,

SiLo is able to significantly reduce RAM usage for index-lookup, achieve the near-exact efficiency of duplicate elimination, maintain a

high deduplication throughput, and obtain load balance among backup nodes.

Index Terms—Data deduplication, storage system, index structure, performance evaluation
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1 INTRODUCTION

DUE to the explosive growth of the digital data, data
deduplication has gained increasing attention for its

space efficiency in backup storage systems. Data deduplica-
tion not only reduces the storage space requirements by
eliminating redundant data [1], [2], [3], [4], [5], [6], [7] but
also minimizes the network transmission of duplicate data
in the network storage systems [8]. It splits files into multi-
ple chunks that are each uniquely identified by a hash sig-
nature (e.g., MD5, SHA-1, and SHA-256), also called a
fingerprint [1], [4]. It removes duplicate chunks by checking
their fingerprints, which avoids byte-by-byte comparisons.

Despite recent progress in data deduplication studies
[4], [9], [10], many challenges remain, particularly in the
petabyte-scale deduplication based backup storage sys-
tems that are generally centralized. One of the main
challenges is the scalability of fingerprint-index based
search schemes [4]. For example, to backup a unique
data set of 1 PB and assuming an average chunk size of
8 KB, at least 2.5 TB of SHA-1 fingerprints will be gener-
ated, which are too large to be stored in the memory.
State-of-the-art deduplication systems [1], [4], [9] suggest
that the access throughput to the on-disk fingerprint-
index is about 1-6 MB/sec, which is too low to be
acceptable for backup services. Thus fingerprinting

indexing has become the main performance bottleneck of
large-scale data deduplication systems.

In order to address this performance bottleneck, many
approaches have been proposed to improve the perfor-
mance of deduplication indexing, by putting the hot finger-
prints into RAM to minimize accesses to on-disk index and
improve the throughput of deduplication. There are two
primary approaches to scaling data deduplication: locality
based acceleration of deduplication, and similarity based
deduplication.

Locality-based approaches exploit the inherent locality in
a backup stream, which is widely used in state-of-the-art
deduplication systems such as DDFS [4], Sparse Indexing
[9], and ChunkStash [11]. The locality in this context means
that the chunks of a backup stream will appear in approxi-
mately the same order in each full backup with a high prob-
ability. Mining this locality increases the RAM utilization
and reduces the accesses to on-disk index, thus alleviating
the disk bottleneck.

Similarity-based approaches are designed to address the
problem encountered by locality-based approaches in
backup streams that either lack or have very weak locality
(e.g., incremental backups). They exploit data similarity
instead of locality in a backup stream, and reduce the RAM
usage by extracting similar characteristics from the backup
stream. A well-known similarity-based approach is Extreme
Binning [10] that improves deduplication scalability by
exploiting the file similarity to achieve a single on-disk
index access for chunk lookup per file.

While these scaling approaches have significantly allevi-
ated the disk bottleneck in data deduplication, there are
still substantial limitations that prevent them from reach-
ing the peta- or exa-scale, as explained below. Based on
our analysis of experimental results, we find that in general
a locality-based deduplication approach performs very
poorly when the backup stream lacks locality while a
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similarity-based approach underperforms for a backup
stream with a weak similarity. Unfortunately, the backup
data in practice are quite complicated in how or whether
locality/similarity is exhibited.

In fact, DDFS is shown to run very slowly in backup
streams when there is little or no locality (e.g., users
only do the incremental backup) [10], [11]. On the other
hand, the similarity-based Extreme Binning approach is
shown to fail to find significant amounts of duplicate
data in data sets that have little or no file similarity (e.g.,
the files are edited frequently) [6], [12]. Fortunately, our
preliminary study indicates that the judicious exploita-
tion of locality can compensate for the lack of similarity
in data sets, and vice versa. In other words, both locality
and similarity can be complementary to each other, and
can be jointly exploited to improve the overall perfor-
mance of deduplication.

Inspired by the state-of-the-art work on exploitation of
locality [4], [11] and similarity [10] for data deduplication
indexing, we present SiLo, a scalable and low-overhead
near-exact deduplication system, to overcome the afore-
mentioned shortcomings of these state-of-the-art schemes.
The main idea behind SiLo is to expose and exploit more
similarity by grouping strongly correlated small files into a
segment and segmenting large files, and to leverage the
locality in the data stream by grouping contiguous seg-
ments into blocks to capture similar and duplicate data
missed by the probabilistic similarity detection. SiLo also
employs a locality based stateless routing algorithm to par-
allelize and distribute data blocks to multiple backup nodes.
The main contributions of this paper include:

� SiLo proposes a new similarity algorithm that
groups many small correlated files into a segment
and segments large files to expose more similarity
and reduce the RAM usage for index-lookup.

� SiLo mines the locality characteristics of data streams
by grouping multiple contiguous segments into
blocks to capture more similar and duplicate data
missed by the probabilistic similarity detection and
caching the recently accessed blocks in RAM to
avoid frequent accesses to on-disk index.

� The combined and complementary exploitation of
these two backup-stream properties overcomes the
shortcomings of existing approaches based on either
property alone. A mathematical model analytically
evaluating this approach for deduplication indexing
is developed and shown to be consistent with our
experimental evaluation.

� SiLo employs a locality based stateless routing algo-
rithm to distribute data blocks to multiple backup
nodes for parallel processing, according to the repre-
sentative fingerprints of data blocks while preserv-
ing the data access locality on each backup node.

� Results from experimental evaluation show that
SiLo significantly improves the overall performance
of deduplication by its judicious and joint exploita-
tion of similarity & locality and outperforms two
existing state-of-the-art approaches, the similarity-
based “Extreme Binning” and the locality-based
“ChunkStash,” under various workloads. Storage

load of SiLo is also shown to be well balanced while
using four backup nodes in our evaluation.

The rest of the paper is organized as follow. Background
and motivation for this research are presented in Section 2.
The architecture and design of SiLo are described in Sec-
tion 3. Our experimental evaluation of SiLo and its compari-
sons with the state-of-the-art ChunkStash and Extreme
Binning systems are discussed in Section 4. We summarize
the related work in Section 5, draw conclusions and outline
future work in Section 6.

2 BACKGROUND AND MOTIVATION

In this section, we first provide the necessary backgrounds
for SiLo, and then motivate our work by analyzing the
observations based on extensive experiments on locality-
and similarity-based deduplication accelerating approaches
under real-world workloads.

2.1 Deduplication Accelerating Approaches

Chunk-based deduplication is the most widely used data
reduction approach for secondary storage systems. Such
a system breaks a file into contiguous chunks and elimi-
nates duplicate chunks by identifying their secure hash
digests (e.g., SHA-1) [1], [8].

As the size of data sets to be deduplicated increases,
so does the total size of fingerprints required to detect
duplicate chunks, which can quickly overflow the RAM
capacity for even high TB-scale and low PB-scale data
sets. This can result in frequent disk accesses for finger-
print-index lookups, thus severely limiting the through-
put of deduplication systems. Plenty of studies [4], [9],
[10], [11] have paid attention to this challenge of data
deduplication which lies in the on-disk index-lookup bot-
tleneck. Currently, there are two general approaches to
accelerating the index-lookup of deduplication and allevi-
ating the disk bottleneck, namely, the locality based and
the similarity based methods.

Locality based approaches. Locality in the context of data dedu-
plication refers to the observation that similar or identical files,
say, A, B, and C (thus their data chunks), in a backup stream
appear in approximately the same order throughout multiple full
backups with a very high probability [4], [13]. As shown in
Fig. 1a, DDFS [4], a well-known deduplication system,
makes full use of this locality property by storing the
chunks in the order of the first backup stream (e.g., chunks’

Fig. 1. Locality based and similarity based deduplication approaches.
(a) Locality approach. (b) Similarity approach.
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fingerprints {4a, c7, 9e, 3d}) on the disk. Upon the lookup of
fingerprint “4a” of the second backup, DDFS will prefetch
the fingerprints {4a, c7, 9e} and preserve this locality in the
RAM, which helps reduce the accesses to the on-disk index
when looking up the fingerprints of “c7,” “9e” later. It also
uses Bloom filters to quickly identify new (non-duplicate)
chunks, which helps compensate for the cases where there
is no or little locality.

Sparse Indexing [9] improves this method by sampling
index instead of using Bloom filters in face of data sets with
little or no locality, which reduces more than half of the
RAM usage for indexing than DDFS. As an improved
chunking algorithm, Bimodal Chunking [13] proposes that
the neighboring data of duplicate chunks should be
assumed to be good deduplication candidates for further
re-chunking due to the backup-stream locality, which helps
maximize the duplicate detection.

Similarity based approaches. The similarity here refers to the
similarity characteristics of a file or a data stream, for example,
the maximal or minimal value of the sets of chunk fingerprints,
that can be extracted to represent the file or the data stream [10].
Fig. 1b shows an example of file similarity, where two sets
of chunk fingerprints, {3b, a7, 2f, 9d} and {3b, a7, 2f, 5c},
belong to files V1 and V2 respectively. Here the file similarity
is represented by the minimal fingerprint in the hash set of
a file whose prefix bits represent the smallest value among
the same prefix bits of all the fingerprints there. Thus in the
event of the minimal fingerprint “2f” of file V2 being
detected to be identical to that of file V1, we can consider the
two files similar and then detect duplicate chunks between
file V1 and V2, which avoids globally indexing for the chunk
fingerprints of file V2.

Generally, the similarity-based approaches are pro-
posed to exploit the similar characteristics of backup
streams to minimize the chunk-lookup index in the mem-
ory. Extreme Binning [10] exploits this similarity among
files instead of locality, allowing it to make only one disk
access for chunk lookup per file. Thus it significantly
reduces the RAM usage by storing only the similarity-
based index in the memory. But it puts similar files in a bin
whose size grows with the size of the data, resulting in
decreased throughput as the size of the similarity bin
increases and failing to exploit the inherent locality of
backup streams [6], [12].

2.2 Deduplication of Large and Small Files

Our experimental observations, as well as intuition, suggest
that the deduplication of large files can be very important
while the deduplication of small files can be very time and
RAM-space consuming.

Large files. A typical file system contains many large
files (e.g., �2 MB) that only account for less than 20 per-
cent of total number of files but occupy more than 80 per-
cent of the total space [7], [14], such as VMware images
and database files. A recent study also suggests that the
files larger than 1 GB account more than 90 percent of the
total space in backup storage systems [15], because of
backup software that tends to group individual files into
“tar-like” collections. Obviously, these large files are an
important consideration for a deduplication system due

to their high space-capacity and bandwidth/time require-
ments in the inline backup process. The larger the files,
the less similar they will appear to be even if significant
parts within the files may be similar or identical, which
can cause the similarity-based approaches to miss the
identification of significant redundant data in large files.

To address this problem of large files, SiLo approach
divides a large file into many small segments to better
expose similarity among large files. More specifically, the
probability that large files S1 and S2 share the same repre-
sentative fingerprint is highly dependent on their similarity
degree according to Broder’s theorem [16], [17]: Consider two
sets S1 and S2, with H(S1) and H(S2) being the corresponding
sets of the hashes of the elements of S1 and S2 respectively, where
H is chosen uniformly and randomly from a min-wise indepen-
dent family of permutations. Let min(S) denotes the smallest ele-
ment of the set of integers S. Then

Pr½minðHðS1ÞÞ ¼ minðHðS2ÞÞ� ¼ jS1 \ S2j
jS1 [ S2j : (1)

This probability can be increased by segmenting the large
files and detecting the similarity of all the segments of the
large files, as follows:

Pr½minðHðS1ÞÞ ¼ minðHðS2ÞÞ� ¼ jS1 \ S2j
jS1 [ S2j

� Pr½minðHðS11ÞÞ ¼ minðHðS21ÞÞ [ � � � [minðHðS1nÞÞ
¼ minðHðS2nÞÞ� ¼

[n
i¼1

Pr½minðHðS1iÞÞ ¼ minðHðS2iÞÞ�

¼ 1�
\n
i¼1

Pr½minðHðS1iÞÞ 6¼ minðHðS2iÞÞ�

¼ 1�
Yn
i¼1

1� jS1i \ S2ij
jS1i [ S2ij

� �
:

(2)

As files S1 and S2 are segmented into segments S11�S1n

and S21�S2n respectively, similarity detection between S1

and S2 is determined by the union of the probabilities of
similarity detection between S11�S1n and S21�S2n. Based
on the above probability analysis, this segmenting approach
will only fail in the worst-case scenario where all the seg-
ments in file S1 are not similar to segments of file S2. This,
based on the inherent locality in the backup streams, hap-
pens with a very small probability because it is extremely
unlikely that two files are very similar but none of their
respective segments is detected as being similar.

Small files. A file system typically contains a very
large number of small files [7], [14]. Since the small files
(e.g., 	64 KB) usually only take up less than 20 percent of
the total space of a file system but account for more than
80 percent of the total number of files, the chunk-lookup
index for small files will be disproportionably large and
likely out of memory. Consequently, the inline deduplica-
tion [4], [9] of small files will tend to be very slow and ineffi-
cient. This problem of small files can be addressed by
grouping many highly correlated small files into a segment.
We consider the logically adjacent files within the same par-
ent directory to be highly correlated and thus similar. We
exploit similarity and locality of a group (i.e., segment) of
adjacent small files rather than one individual file or chunk.
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As a result, at most one access to on-disk index is needed
per segment instead of per file or per chunk.

2.3 Similarity and Locality

In this section, we further analyze the relationship between
similarity and locality with respect to backup streams. As
our motivation, we jointly exploit similarity and locality of
backup streams by grouping several chunks into a segment
and grouping several segments into a block respectively.
Detailed definitions of segment and block in SiLo are given
as follows:

� A segment consists of several sequential chunks so as
to expose and exploit the backup-stream similarity,
whose implementation is presented in Section 3.2.
We only place the similarity index (e.g., the minimal
chunk-fingerprint) of each segment in the RAM to
reduce the RAM usage of fingerprint indexing.

� A block is composed of several sequential segments so
as to preserve and exploit the backup-stream locality,
whose implementation is described in Section 3.3.We
fully exploit the locality of recently accessed blocks
by keeping their associated fingerprints in the RAM
tominimize the accesses to on-disk index.

As mentioned in Section 2.2, we pack small files and seg-
ment large files into segments to exploit similarity for dupli-
cate detection. As shown in Fig. 2, we examine the
distribution of similarity degree and the duplicate elimina-
tion measure of this similarity-only deduplication approach
on four data sets. The four data sets represent the workloads
of the first backups, incremental backups, Linux source
code files and several full-backups respectively, whose
characteristics will be detailed in Section 4.1. The similarity
degree is computed in our similarity approach by detecting
the duplicates among an input segment and the currently
stored segments as: Simi(Sinput ¼ Max) (jSinput \Sij)/jSinputj,
(Si 2Sstore, Simi(Sinput)2 [0, 1]). Thus, a similarity degree of
“1” signifies that the input segment is completely identical
to some of the currently stored segments and a similarity
degree of “0” states that the segment is detected to match
no other segments at all by the similarity-only approach.

Fig. 2a shows that a large percentage of segments are of
low similarity degree in our four real-world data sets. Fig. 2b
demonstrates that similarity-only based deduplication
approach fails to remove a large proportion of duplicate data
when the data sets have a large amount of duplicate data
with low similarity degree (e.g., One-set and Inc-set).

Therefore, similarity-based deduplication efficiency heavily
depends on the similarity degree of the backup streamwhich
is well consistent with Broder’s Theorem (see Section 2.2).

In addition, Extreme Binning groups many similar files
to a bin [10], which cannot meet the requirements of increas-
ing number of backup versions. Now, introducing a group
of new similar sets S1�Sn. According to aforementioned
Broder’s Theorem [16], all of these similar files are grouped
into the same bin can be computed as follows:

Pr½minðHðS1ÞÞ ¼ minðHðS2ÞÞ ¼ � � � ¼ minðHðSnÞÞ�

¼ jS1 \ S2 \ � � � \ Snj
jS1 [ S2 [ � � � \ Snj ¼

jTn
i¼1 Sij

j S n
i¼1Sij 	

jS1 \ S2j
jS1 [ S2j :

(3)

As a result, it can be speculated that the increasing simi-
lar files will be not put into the same bin, resulting in more
duplicate data will be missed to be detected by the similar-
ity approach [10]. Inspired by Bimodal Chunking [13],
which shows that the backup stream locality can be mined
to find more potentially duplicate data, we believe that such
locality can also be mined to expose and thus detect more
data similarity, a point well demonstrated by our experi-
mental study in Section 4. More specifically, SiLo mines
locality in conjunction with similarity by grouping multiple
contiguous segments in a backup stream into a block.

Therefore, SiLo could detect potentially duplicate data
chunks missed by the probabilistic similarity detection by
jointly exploiting similarity and locality of the segments and
blocks. For example, segments S11, S12, and S13 are similar
to segments S21, S22, and S23 respectively, but only S11 and
S21 have the same representative fingerprint. Then we
exploit locality by grouping S11�S13 and S21�S23 into
blocks B1 and B2. Since we detect S11 and S21 to be similar
by their representative fingerprints and then load block B1

into cache, S22 and S23 will be detected to be potentially sim-
ilar to S12 and S13 respectively in the cache. Thus, this
exploitation of locality helps expose more similarity and
then find more potential deduplication candidates by
detecting similar segments’ adjacent segments.

Now we analyze deduplication efficiency of the com-
bined exploitation of similarity and locality. Given two
blocks B1 and B2, each containing n segments (S11�S1n,
S21�S2n), according to the Broder’s theorem, the percentage
of duplicate eliminated by the similarity-only approach can
be computed as: DedupSimi(B1, B2 ¼)jB1 \B2j/jB1 [B2j.
The combined and complementary exploitation of similarity
and locality can be computed as follows:

DeDupSiLoðB1; B2Þ

¼ Pr

� [n
i¼1

minðHðS1iÞÞ ¼ minðHðS2iÞÞ
�

¼ 1� Pr

�\n
i¼1

minðHðS1iÞÞ 6¼ minðHðS2iÞÞ
�

¼ 1�
Yn
i¼1

1� jS1i \ S2ij
jS1i [ S2ij

� �

¼ 1� ð1� aÞN assume all the
jS1i \ S2ij
jS1i [ S2ij ¼ a

� �
:

(4)

Fig. 2. Our experimental observations of the similarity-only approach
on four data sets. (a) The distribution of segment similarity degree.
(b) Duplicate eliminated by the similarity-only approach.
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Assume that the value a follows a standard uniform dis-
tribution in the range [0, 1] (It may be much more compli-
cated in the real world data sets as shown Fig. 2a), the
expected value of duplicate elimination can be further cal-
culated under the above assumption as:

ESimi ¼
Z 1

0

ðaÞda ¼ 1

2

ESiLo ¼
Z 1

0

ð1� ð1� aÞNÞda ¼ N

N þ 1

¼ BlockSize=SegSize

BlockSize=SegSizeþ 1
¼ BlockSize

BlockSizeþ SegSize
:

(5)

Thus the larger the value N (i.e., the number of segments
in a block), the more locality can be exploited in deduplica-
tion. ESimi is equal to ESiLo when N ¼ 1. SiLo removes more
than 99 percent of duplicate data when N > 99. Then SiLo
could achieve the performance of near-exact duplicate elim-
ination with proper ratio of “BlockSize/SegSize” as shown
in Fig. 3a while it only maintains hundreds of similarity
indices in the RAM (i.e., segment size >1MB) to dedupli-
cate a GB data with millions of chunks as depicted in
Fig. 3b.

Therefore, SiLo, through its judicious and joint exploita-
tion of locality and similarity, is able to achieve the near-
exact duplicate elimination (recall that exact deduplication
achieves complete duplicate elimination) and requires at
most one disk access per segment (i.e., a group of contigu-
ous chunks or small files).

3 DESIGN AND IMPLEMENTATION

In this section, we will first describe the architecture over-
view of SiLo. Then we give detailed description of its design
and implementation algorithms. At the end of this section,
we discuss the overall workflow of SiLo.

3.1 System Architecture Overview

SiLo is designed for large-scale and disk-inline backup stor-
age systems. As depicted in Fig. 4, the SiLo architecture con-
sists of four key functional components, namely, file
daemon (FD), deduplication server (DS), storage server
(SS), and backup server (BS), which are distributed in the

data centers to serve the backup requests. BS and DS reside
in the metadata server (MDS) while FD is installed on each
client machine that requires backup/restore services.

� File Daemon is a daemon program providing a func-
tional interface (e.g., backup/restore) in users’ com-
puters. It is responsible for collecting backup data
sets and sending/restoring them to/from Storage
Servers for backups/restores. The processes of
chunking, fingerprinting, and segmenting can be
done by FD in the preliminary phase of the inline
deduplication. It also includes a file agent that is
responsible for communicating with BS and DS and
transferring backup data to/from SS.

� Backup Server is the manager of the backup system
that globally manages all jobs of backup/restore and
directs all File Agents and Storage Servers. It main-
tains a metadata database for administering all
backup files’ information.

� Deduplication Server is to store and look up all finger-
prints of files and chunks. It is also responsible for
distributing the data blocks to store to multiple
backup nodes with a stateless routing algorithm.

� Storage Server is the repository for backed-up data. SS
in SiLo manages multiple Storage Nodes for scalabil-
ity and provides fast, reliable, and safe backup/
restore services.

In this paper, we focus on deduplication server since it is
the most likely performance bottleneck of the entire dedu-
plication system. DS consists of locality hash table
(LHTable), similarity hash table (SHTable), write buffer,
and read cache. While SHTable and LHTable index seg-
ments and blocks, the similarity and locality units of SiLo
respectively, the write buffer and read cache preserve the
similarity and locality of backup streams, as shown in
Fig. 5. As mentioned in Section 2.3, the notion of segment is
used to exploit the similarity of backup stream while the
block preserves the stream-informed locality layout of seg-
ments on the disk. SHTable provides the similarity detec-
tion for input segments and LHTable serves to quickly

Fig. 3. Predictive analytic of combined exploitation of similarity and local-
ity as a function of segment size and block size. (a) The percentage of
duplicate data eliminated. (b) Similarity index number per GB unique
data.

Fig. 4. The SiLo system architecture.
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index and filter out duplicate chunks. The write buffer and
read cache contain the recently accessed blocks to exploit
the backup stream locality [4].

For the input data stream, SiLo will first use its similarity
algorithm (Section 3.2) to pack correlated small files and
divide large files into segments and check with SHTable to
detect similarity. Then SiLo will use its locality algorithm
(Section 3.3) to enhance the similarity detection thus find
more duplicate data. Finally, SiLo will distribute the data-
block to different storage nodes by a locality based stateless
routing algorithm (Section 3.4).

Note that, since this paper mainly aims to improve the
indexing performance by making highly efficient use of
the cache space of RAM and reducing accesses to on-disk
fingerprints in the deduplication system, all write/read
operations of segments/blocks in this paper are per-
formed in the form of writing/reading chunks’ finger-
prints while operations on the data-block are performed
on the real backup data.

3.2 Similarity Algorithm

As mentioned in Section 2.3, SiLo improves deduplication
index scalability by combined exploitation of similarity and
locality. It exploits similarity by grouping strongly corre-
lated small files and segmenting large files, while locality is
exploited by grouping contiguous segments in a backup
stream to preserve the locality layout of these segments as
depicted in Fig. 6. Thus, segments are the atomic building
units of a block that is in turn the atomic unit of write buffer
and read cache and blocks are indexed by the unique block
ID over the lifetime of the system.

As a key contribution of SiLo, the SiLo similarity algo-
rithm is implemented in file daemon, which structures data
from backup streams into segments after the processing of
chunking and fingerprinting according to the following
three principles.

� P1. Fingerprint set of correlated small files in a
backup stream (e.g., those under the same parent
directory) are to be grouped into a segment.

� P2. Fingerprint set of a large file in a backup stream
is divided into several independent segments.

� P3. All segments are of approximately the same size
(e.g., 2 MB).

Where, P1 aims to reduce the RAM overhead of index-
lookup; P2 helps expose more similarity characteristics of
large files to eliminate more duplicate data; and P3 simpli-
fies the management of segments. Thus, the similarity algo-
rithm exposes and then exploits more similarity by
leveraging file semantics and preserving locality-layout of a
backup stream to significantly reduce the RAM usage for
deduplication indexing.

The method of representative fingerprinting [10] is
employed in SiLo to represent each segment by a similarity-
index entry in the similarity hash table. By virtue of P1, the
SiLo similarity design solves the problem of small files tak-
ing up disproportionably large RAM space. For example,
assuming an average segment size of 2 MB and an average
chunk or small file size of 8 KB, a segment accommodates
250 chunks or small files, thus significantly reducing the
required index size in the memory. If we assume a 60-byte
primary key for the similarity indexing of a 4 MB segment
(backup data), which is considered economic, a 1 PB backup
stream only needs 15 GB similarity-index for deduplication
that can easily fit in the memory. Therefore, SiLo is able to
use a very small and proper portion of RAM to support PB-
scale deduplication by virtue of its similarity algorithm.

3.3 Locality Approach

As another salient feature of SiLo, the SiLo locality algo-
rithm groups several contiguous segments in a backup
stream into a block and preserves their locality-layout on
the disk. The methods and workflow of this locality algo-
rithm are depicted in Fig. 7. According to the locality char-
acteristic of backup streams, if input segment S1i in block
B1 is determined to be similar to segment S2k by hitting in
similarity hash table, SiLo will consider the whole block B1

to be similar to block B2 that contains S2k. As a result, this
grouping of contiguous segments into a block can eliminate
more potentially duplicate data that is missed by the proba-
bilistic similarity detection, thus complementing the similar-
ity detection.

Since the block is the minimal write/read unit of write
buffer and read cache in the SiLo system, it serves to max-
imize the RAM utilization and reduce frequent accesses to
on-disk index by retaining access locality of the backup
stream. When SiLo reads the blocks from disk by the simi-
larity detection, it puts the recently accessed block into

Fig. 5. Data structures of the deduplication server. RepChunkID is the
representative fingerprint of a segment and Chunk ID is the SHA-1 fin-
gerprint of a chunk.

Fig. 6. Data structures of the SiLo similarity algorithm.
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the read cache. By preserving the backup-stream locality
in the read cache, the accesses to on-disk index due to
similarity detection can be significantly reduced, which
alleviates the disk bottleneck and increases the deduplica-
tion throughput.

The block size is an important system parameter that
affects the system performance in terms of duplicate elimi-
nation and throughput (see Fig. 3). The smaller the block
size, the more disk accesses will be required by the server to
read the index, weakening the locality exploitation. The
larger the block size, on the other hand, the more unrelated
segments will be read by the server from the disk, increas-
ing system’s space and time overheads for deduplication
indexing. Therefore, a proper block size not only provides
good duplicate elimination, but also achieves high through-
put and low RAM usage in the SiLo system.

Each block in SiLo has its own locality hash table (i.e.,
LHTable shown in Fig. 5) for chunk filtering. Since a block
contains several segments, it needs an indexing tool for
thousands of fingerprints. The fingerprints in a block are
organized into the LHTable when reading the block from
the disk. The additional time required for constructing
LHTable in a block is significantly compensated by its quick
indexing.

Beside the locality of read cache, we also exploit the local-
ity of write buffer for data deduplication. Since users of file
systems tend to duplicate files or directories under the same
directories, a significant amount of duplicate data can be
also eliminated by detecting the duplication in write buffer
that also preserves the locality of a backup stream. For
example, a code directory may include many versions of
source code files or documents that become good dedupli-
cation candidates.

In our current design of SiLo, the read cache and write
buffer each contains a fixed number of blocks. Only a very
small portion of RAM is thus used as the write buffer and
read cache to store a small number of recently accessed
blocks to avoid the frequent and expensive disk read/write
operations. As illustrated in Figs. 5 and 6, a locality-block

contains only metadata information such as LHTable, seg-
ment information, chunk information, and file information,
which enables a 1 MB locality-block to represent a 200 MB
data-block.

3.4 Load Distribution

To meet the requirement of increasing size of data sets and
scale up the deduplication throughput, the system should
distribute and parallelize backup streams to multiple stor-
age nodes. Inspired by the previous stateless routing
approaches [10], [12], SiLo proposes a locality-based state-
less routing algorithm that also makes full use of the afore-
mentioned similarity and locality of backup streams.
Specifically, the representative fingerprints [10] of blocks
(i.e., BlockRepID) are examined and updated when the
input segments are grouped into blocks to determine which
backup node a data-block should be stored, as shown in
Fig. 8. For example, if there are N backup nodes, the block
with representative fingerprint Fi will be allocated to
backup node Fi mod N .

This locality based routing technique is designed to max-
imize the scalability and availability of the deduplication
based data storage while maintaining the exploitation of
similarity and locality for deduplication indexing. More-
over, the data on a backup node may eventually be split
into two approximately equal parts when more nodes are
added into the system or when this node becomes overly
loaded due to either disproportionally high access popular-
ity or amount of data stored. The block with representative
fingerprint Fi on the original backup node Fi mod N will be
rebalanced into the new node Fi mod ðN þ 1Þ, which avoids
rebalancing the data globally in the deduplication system.

The benefits of this locality-based distributed approach
of SiLo are twofold. First, SiLo’s process of routing a data-
block to a backup node is stateless, thus independent of any
knowledge or content of backup nodes. Due to the random-
ness property of hash digest algorithms (e.g., SHA-1), the
representative fingerprint of a locality-aware block is a suit-
able choice for distributing the blocks among multiple stor-
age nodes and obtaining load balance. Second, SiLo also
preserves the backup stream locality in each backup node
while minimizing the data dependencies among backup
nodes. Thus, the data is stored in a backup node instead of
being fragmented across multiple nodes. This means that

Fig. 7. The workflow of the locality algorithm: it helps detect more poten-
tially duplicate chunks that are missed by the similarity detection. “N”
refers to the fact that the segment is detected as dissimilar.

Fig. 8. The locality-based routing algorithm of SiLo.
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the access locality is preserved in a node so that tasks such
as data restore, data deletion, and garbage collection do not
have to frequently chase dependencies spanning multiple
backup nodes.

3.5 SiLo Workflow

To put things together and in perspective, Fig. 9 shows the
main workflow of SiLo deduplication processes. Files in the
backup stream are first chunked, fingerprinted, and packed
into segments by grouping strongly correlated small files
and segmenting large files in the file agent. For an input seg-
ment Snew, SiLo goes through the following key steps:

� Check to see if Snew is in the SHTable. If it hits in
SHTable, SiLo checks if the block Bbk containing
Snew’s similar segment is in the cache. If it is not in
the cache, SiLo will load Bbk from the disk to the
read cache according to the referenced block ID of
Snew’s similar segment, where a block is replaced in
the FIFO order if the cache is full.

� The duplicate chunks in Snew are detected and elimi-
nated by checking the fingerprint sets of Snew with
LHTable (fingerprints index) of Bbk in the cache.

� If Snew misses in SHTable, it is then checked against
recently accessed blocks in the read cache for poten-
tially similar segment (i.e., locality-enhanced similar-
ity detection).

Then SiLo will construct input segments into blocks to
retain access locality of the input backup stream. For an
input block Bnew, SiLo does following:

� The representative fingerprint of Bnew will be exam-
ined to determine the stored backup nodes of data-
block Bnew.

� SiLo checks if the write buffer is full. If the write
buffer is full, a block there is replaced in the FIFO
order by Bnew and then written to the disk.

After the process of deduplication indexing, SiLo will
record the chunk-to-file mapping information as the refer-
ence for each file, which is managed by the job metadata of

the backup server. For the read operation, SiLo will read
the referenced metadata of each target file in the job meta-
data that allows the corresponding data chunks to be read
from the data blocks in the storage server. These data
chunks will then be used to reconstruct the target files in
the file daemon according to the index mapping relation-
ship between files and deduplicated data chunks.

4 PERFORMANCE EVALUATIONS

In this section, we first describe the experimental setup of
performance evaluations on SiLo protype implementation.
Then, we examine several important design parameters of
SiLo system to provide useful insights, and compare SiLo
with two state-of-the-art approaches Extreme Binning and
ChunkStash in the key deduplication metrics of duplicate
elimination, RAM usage, and throughput. At the end of this
section, we discuss experimental results of SiLo’s load dis-
tribution algorithm.

4.1 Experimental Setup

We conduct our performance evaluation of SiLo on a
platform of standard server configuration to evaluate
and compare the inline deduplication performances of
SiLo, ChunkStash, and Extreme Binning approaches run-
ning on a Linux environment. The hardware configura-
tion includes a quad-core CPU running at 2.4 GHz, with
a 4 GB RAM, 2 gigabit network interface cards, and two
500 GB 7,200 rpm hard disks.

Due to our lack of access to the source code of either
the ChunkStash or Extreme Binning scheme, we have
chosen to implement both of them. More specifically, we
have implemented the locality-based and exact-
deduplication approach of ChunkStash incorporating the
principles and algorithms described in the ChunkStash
paper [11]. The ChunkStash approach makes full use of
the inherent locality of backup streams and uses a novel
data structure called Cuckoo hash for fingerprint index-
ing. We have also implemented a simple version of the
Extreme Binning approach, which represents a similarity-
based and approximate-deduplication approach accord-
ing to the algorithms described in the Extreme Binning
paper [10]. Extreme Binning exploits file similarity
instead of locality in the backup streams.

Note that our evaluation platform is not a production-
quality deduplication system but rather a research proto-
type. Hence, our evaluation results should be interpreted as
an approximate and comparative assessment of the three
systems above, and not be used for absolute comparisons
with other deduplication systems. The RAM usage in our
evaluation is obtained by recording the memory allocated
for index-lookup. The duplicate elimination performance
metric is defined as the percentage of duplicate data elimi-
nated by the system. Throughput of the system is measured
by the rate at which fingerprints of the backup stream are
processed, not the real backup throughput in that it does
not measure the rate at which the backup data is transferred
and stored.

Five traces representing different strengths of locality
and similarity are used in the performance evaluation of the
three deduplication systems and are listed in Table 1. The

Fig. 9. The workflow of SiLo deduplication.
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five traces are collected from real-world data sets of One-
backup, Incremental-backup, Linux-version, and two Full-
backup sets respectively.

� One-set trace was collected from 15 graduate stu-
dents of our research group. Since we obtain only
one full backup for this group, this trace has weak
locality and weak similarity.

� Inc-set is a subset of the trace reported by Tan
et al. [18] and was collected from initial full back-
ups and subsequent incremental backups of eight
members in a research group. There are 391 back-
ups with a total of 251 GB data. Since the opera-
tion of incremental backup only backs up the
modified and new files after the first full backup,
Inc-set represents data sets with strong similarity
but weak locality.

� Linux-set, downloaded from the website [19], con-
sists of 900 versions from version 1.1.13 to 2.6.33, and
represents the characteristics of small files.

� Full-set1 consists of 380 full backups of 19 research-
ers’PCs over 20 days, which is reported by Xing et al.
[20]. Full-set1 represents the data sets with strong
locality and strong similarity.

� Full-set2 was collected from an engineering group
consisting of 15 graduate students and was used in
[6]. The students in this group ran full or incremental
backups independently in a span of 31 days. Full-
set2 also represents data sets with strong locality and
strong similarity.

Both Linux-set, Full-set1, and Full-set2 are used in previ-
ous studies [10], [20], and [6] respectively to evaluate the
performance of Extreme Binning, and our use of these data
sets resulted in similar and consistent evaluation results
with the published studies.

4.2 A Sensitivity Study of SiLo

SiLo’s performance is likely influenced by several impor-
tant factors, including the segment size, the block size,
and the cache size (measured by the number of blocks in
cache). The mutually interactive nature of similarity and
locality in SiLo dictates a good understanding of the
relationship between locality and similarity before a
thorough performance evaluation is carried out. Thus,
we first examine the impact of the SiLo design parame-
ters of block size and segment size on duplicate elimina-
tion and time overhead, which is critical for the SiLo
locality and similarity algorithms.

Segment size and block size. Fig. 10 shows the percentage of
duplicate data eliminated by SiLo approach with different
block size and segment size. We observe that the duplicate
elimination performance, defined as the percentage of
duplicate data eliminated, increases with the block size but
decreases with the segment size. This is because the smaller
the segment is (e.g., segment size of 512 KB), the more simi-
larity can be exposed and detected, enabling more duplicate
data to be removed. On the other hand, the larger the block
is (e.g., block size of 512 MB), the more locality of the
backup stream will be retained and captured, allowing SiLo
to eliminate more than 97 percent of redundant data regard-
less of the segment size. This is consistent with our motiva-
tion and mathematic analysis that combined exploitation of
similarity and locality could achieve near-exact duplicate
elimination as is shown in Fig. 3 of Section 2.

Although more redundant data can be eliminated by
reducing the segment size or filling a block with more seg-
ments, as indicated by the results shown in Fig. 10, it results
in more accesses to on-disks index and higher RAM usage
due to the increased index entries in the SHTable (see
Fig. 5). As the time-overhead of deduplication indexing,
shown in Fig. 11, clearly suggests, continuously decreasing
the segment size or increasing the block size can become
counterproductive after a certain point. From Fig. 11, we
further find that, for a fixed block size, the time overhead is
inversely proportional to the segment size. This is consistent
with our intuition that smaller segment size results in more
frequent similarity detections for the input segments, which
in turn can cause more accesses to on-disk index.

Fig. 11 also shows that there is a knee point for each
curve, meaning that for a given segment size and work-
load the time overhead decreases first and then increases
(except Fig. 11c). This can be explained by the fact that,
with a very small block size (e.g., 8 MB), there is little
locality to be mined, resulting in frequent accesses to on-
disk index. With a very large block size (e.g., 512 MB),

TABLE 1
Workload Characteristics of the Five Traces Used

in the Performance Evaluation

All use SHA-1 for chunk fingerprints and the content-defined Chunking
algorithm. The deduplication factor is defined as the totalsize/(totalsize-
dedupsize) ratio.

Fig. 10. Percentage of duplicate eliminated as a function of block and segment size. (a) One-set. (b) Inc-set. (c) Linux-set. (d) Full-set1.
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SiLo also runs slower because the increased disk accesses
for locality exploitation may result in more unrelated
segments being read in. The Linux-set is different from
other data sets in Fig. 11, because the average size of a
Linux version is 110 MB, which enables more related
locality to be exploited at the block size of 256 MB.

Size of read cache. Fig. 12 shows the deduplication
throughput performance of SiLo with different number of
blocks in the read cache under five data sets. Although
the deduplication throughput will increase with the num-
ber of blocks in the read cache, it results in more RAM
overhead to store the cached blocks. With a large number
of blocks (e.g., number ¼ 16), the deduplication through-
put will increasing slowly and even decrease a little
because it may results in more invalid indexing opera-
tions in the read cache by SiLo’s locality algorithm. Thus
the read cache with eight or 16 blocks can be a proper
choice for SiLo.

As analyzed from Figs. 10, 11, and 12, there evidently
exists an optimum segment size (e.g., 2 MB), an opti-
mum block size (e.g., 256 MB), and an optimum size of
the read cache (e.g., 16 blocks), subject to a given work-
load and deduplication requirement (e.g., duplicate elim-
ination or deduplication throughput). The choices of
segment size, block size, and number of blocks can be
adjusted by the user’s specific requirements, such as
larger segment size for higher throughput and lower
RAM overhead but less duplicate elimination, and larger
block size for more duplicate elimination but lower
throughput.

Locality enhanced similarity detection. Fig. 13 shows the
duplicate data eliminated respectively by SiLo’s similar-
ity approach and SiLo’s locality approach under different
similarity degree on the Linux data set. The missed

portion of duplicate elimination is defined as the differ-
ence between the measure achieved by the exact dedupli-
cation and that by the SiLo approach. Therefore, the
similarity-based deduplication efficiency shown in Fig. 13
heavily depends on the similarity degree of the backup
stream which is well consistent with Broder’s Theorem
(see Section 2.2). The similarity approach often fails to
remove large amounts of duplicate data, especially when
the backup stream has a low similarity degree. But full
exploitation of locality jointly with that of similarity can
remove almost all redundant data missed by the similar-
ity detection regardless of similarity degree. Fig. 14 fur-
ther demonstrates that the combined exploitation of
locality and similarity can remove almost all redundant
data under all workloads. In fact, only an extremely small
amount of duplicate data is missed by SiLo even on the
data sets with weak locality and similarity. The results of
Figs. 13 and 14 can be compared with Figs. 2a and 2b,
then well verify our motivation of similarity and locality
in Section 2.

4.3 Comparison Evaluations of SiLo

This section presents evaluation results comparing SiLo
with two other state-of-the-art deduplication systems, the
similarity-based Extreme Binning system and the locality-
based ChunkStash system, by executing the five real-world
traces described in Section 4.1 on these three systems. Note
that in this evaluation SiLo assumes a block size of 256 MB
and a read-cache size of 10 blocks, while SiLo-2 MB and
SiLo-4MB represent SiLo with a segment size of 2 and 4 MB
respectively. Thus the SiLo-2 MB approach exploits more
similarity, as discussed in Section 4.2, while SiLo-4 MB

Fig. 11. Time overhead of dedupe indexing as a function of block and segment size. (a) One-set. (b) Inc-set. (c) Linux-set. (d) Full-set1.

Fig. 12. Throughput of deduplication indexing on five data sets as a func-
tion of the read cache size (i.e., the number of blocks).

Fig. 13. Percentage of duplicate data eliminated as a function of different
similarity degrees on the Linux-set by the similarity-only approach and
locality-only approach respectively.
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consumes less RAM space for similarity indexing but at the
cost of duplicate elimination.

4.3.1 Duplicate Elimination

Fig. 15 shows the duplicate elimination performance of
the three systems under the five workloads. Since
ChunkStash does the exact deduplication, it eliminates
100 percent of duplicate data. Compared with Extreme
Binning that eliminates 71�99 percent of duplicate data
in the five data sets, SiLo removes about 98.5�99.9 per-
cent of duplicate data. Note that, while Extreme Binning
eliminates about 99 percent of duplicate data as expected
in Linux-set, Full-set1 and Full-set2 that has strong simi-
larity and locality, it fails to detect almost 30 percent of
duplicate data in One-set that has weak locality and sim-
ilarity, and about 25 percent of duplicate data in Inc-set
with weak locality but strong similarity. Although there
is strong similarity in Inc-set, Extreme Binning still fails
to eliminate a significant amount of duplicate data pri-
marily due to its probabilistic similarity detection that
simply chooses one representative fingerprint for each
file regardless of the file size.

On the contrary, SiLo-2 MB eliminates 99 percent of
duplicate data even in One-set with both weak similarity
and locality, and also removes almost 99.9 percent of dupli-
cate data in Linux-set, Full-set1 and Full-set2 with both
strong similarity and locality. These results show that SiLo’s
joint and complementary exploitation of similarity and
locality is very effective in detecting and eliminating dupli-
cate data under all workloads, achieving near-complete
duplicate elimination.

4.3.2 RAM Usage for Deduplication Indexing

Fig. 16 shows the RAM usage for deduplication among
these three systems under the five workloads. For Linux-
set that has a very large number of small files and small
chunks, the highest RAM usage is incurred for both
Chunkstash and Extreme Binning. There is also a clear
negative correlation between the deduplication factor
and the RAM usage for the approximate deduplication
systems of SiLo and Extreme Binning on the other four
workloads. That is, for One-set that has the lowest dedu-
plication factor, the highest RAM usage is incurred,
while for Full-set1 that has the highest deduplication fac-
tor, the smallest RAM space is required.

The average RAM usage for ChunkStash is the highest
among the three approaches, except for the Linux-set trace,
as it does the exact deduplication that needs a large hash
table in the memory to put all the indices of chunk finger-
prints. Although ChunkStash uses the Cuckoo hash to
store the compact key signatures instead of full chunk-fin-
gerprints, it still requires at least 6 bytes for each new
chunk. In addition, according to the open-source code of
Cuckoo Hash which is used in this paper for ChunkStash
evaluation [22], it needs to allocate about two million slots
in advance to support one million index entries. Note that
using the variant of Cuckoo hash may incur a high load
factor but still store at least 6 bytes for each new chunk in
the ChunkStash system.

Since only the file similarity index needs to be stored in
the RAM, Extreme Binning only consumes about 1/9�1/15
of the RAM space required of ChunkStash except on the
Linux-set where it consumes more RAM usage than Chunk-
Stash due to the extremely large number of small files.
However, SiLo-2MB’s RAM efficiency allows it to reduce
the RAM consumption of Extreme Binning by a factor of
3�900. The extremely low RAM overhead of SiLo stems
from the interplay between its similarity and locality algo-
rithm. On the other hand, the RAM usage for Extreme Bin-
ning depends on the average file size of data sets, in
addition to the deduplication factor. The smaller the aver-
age file size is, the more RAM space Extreme Binning will
consume, which is demonstrated in the Linux-set. The RAM
usage of SiLo remains relatively stable with the change in
average file size in the five traces and is inversely propor-
tional to the deduplication factor of the traces as shown in
Fig. 16.

Fig. 14. Percentage of duplicate data eliminated on four data sets by the
similarity-only approach and locality-only approach respectively.

Fig. 15. Comparison among ChunkStash, SiLo, and Extreme Binning in
terms of percentage of duplicate data eliminated on the five data sets.

Fig. 16. Comparisons among ChunkStash, SiLo, and Extreme Binning in
terms of RAM usage (B: RAM required per MB backup data).
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Table 2 shows the RAM usage in a PB-scale deduplica-
tion system for several state-of-the-art approaches. As a
representative fingerprint requires about 60 bytes as key
index in the memory regardless of the average chunk size,
Extreme Binning [10] demands almost 300 GB of RAM
space with a mean file size of about 200 KB [14] in a PB-
scale deduplication system while SiLo-2 MB and SiLo-
4 MB consume about 30 and 15 GB memory by a similarity
and locality based deduplication index design. DDFS [4]
consumes about 125 GB RAM space for deduplicating 1 PB
unique data (one byte per chunk by the Bloom filter) while
Sparse Indexing [9] reduces the RAM usage to about
85 GB by a sparse index design with 1/64 sampling. HPDS
[21] further reduces the RAM usage to about 50 GB by a
progressive sampled index with a sampling rate of 1/101.
Both ChunkStash [11] and MAD2 [6] consume almost 1 TB
of RAM space to maintain a global index in a PB-scale
deduplication system by their cuckoo-hash based and
bloom-filter-array based indexing schemes respectively.
Thus SiLo uses significantly less RAM space than the
above state-of-the-art approaches. As the RAM space is still
limited in computer systems, the lower usage of memory
means a higher scalability of the SiLo deduplication
system.

4.3.3 Deduplication Throughput

Fig. 17 shows a comparison among the three approaches in
terms of deduplication throughput, where the throughput
is observed to more than double as the average chunk size
changes from 5 (e.g., Full-set2) to 10 KB (e.g., One-set).
ChunkStash achieves an average throughput of about

292 MB/sec with a range of 24-654 MB/sec on the five data
sets. The frequency of accesses to on-disk index by
ChunkStash’s compact key signatures algorithm on the
Cuckoo hash lookup tends to increase with the size of the
data set, thus adversely affecting the throughput. Extreme
Binning achieves an average throughput of 768 MB/sec
with a range of 158-1571 MB/sec on the five data sets, since
it only needs to access the disk once per similar-file and
eliminates the duplicate files in the memory. As SiLo-2 MB
makes at most one disk access per segment, it deduplicates
data at an average throughput of 1,042 MB/sec with a range
of 538-1486 MB/sec on the five data sets.

Although Extreme Binning runs faster than SiLo-2 MB
under Inc-set where many duplicate files exist, it runs much
slower in other data sets. Since each bin stores all similar
files and it tends to grow in size with the size of data sets.
As a result, Extreme Binning will slow down as the size of
each bin increases since each similar file must read its corre-
sponding bin in its entirety. In addition, the design of bin
fails to exploit the backup-stream locality that helps reduce
disk accesses and increase the RAM utilization by preserv-
ing the locality layout in RAM.

Therefore, compared with Extreme Binning and
ChunkStash, SiLo is shown to provide robust and consis-
tently good deduplication performance, achieving higher
throughput, and near-exact duplicate elimination at a
much lower RAM overhead.

4.3.4 Load Distribution of SiLo

This section presents evaluation results of SiLo’s locality
based routing algorithm. Fig. 18 shows how much dedu-
plicated data is managed by each backup node on five
data sets. Since only unique chunk contents (non-dupli-
cate) are stored on disk ultimately, the deduplicated data
sizes in fact demonstrate the storage loads of real world
applications. It is clear that no single node gets over-
loaded and the deduplicated data of each data set is dis-
tributed evenly. The One-set is deduplicated to 530 GB
and then stored to four distributed backup nodes with
size of 73, 76, 79, and 69 GB respectively. Other data sets
show similar trends as the One-set.

The results in Fig. 18 show that the distribution of data-
block to backup nodes is not uneven and achieves the per-
formance of well balanced load. This property of SiLo is

TABLE 2
Comparisons of Several State-of-the-Art Deduplication

Approaches in Terms of RAM Usage per PB Unique Data

We assume that average file size is 200 KB, secure fingerprint is SHA-1,
and chunks are not compressed.

Fig. 17. Comparison among ChunkStash, SiLo, and Extreme Binning in
terms of deduplication throughput (MB/sec).

Fig. 18. Size of deduplicated data on each backup node under five real-
world workloads when using 4 backup nodes.
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important to guarantee smooth scale out, improve data reli-
ability and prevent any node from becoming a bottleneck of
the overall system performance. Due to the randomness
property of hash digest algorithms (e.g., SHA-1), a balanced
load can also be achieved by SiLo’s routing algorithm when
more nodes are added.

5 RELATED WORK

Data deduplication is an essential and critical component of
backup/archiving storage systems. We briefly review the
work that is most relevant to SiLo to put it in the appropri-
ate perspective. LBFS [8] first proposes the content-defined
Chunking algorithm adopting the Rabin fingerprints [23],
and applies it to the network file system to reduce transmis-
sion of redundant data. Venti [1] employs deduplication in
an archival storage system and significantly reduces the
storage space requirements. Policroniades and Pratt [3] and
Kulkarni et al. [2] compare the performance of several dedu-
plication approaches, such as file-level, fixed-size chunking,
and content-based chunking. Besides the above chunking
approaches, a lot of efforts have been put into optimizing
chunking algorithms, such as Bimodal chunking [13], two
threshold two denominators (TTTD) [24], etc.

Recently, increasing attention has been paid to avoiding
the fingerprint-lookup disk bottleneck and enabling more
efficient, reliable, and scalable deduplication in mass stor-
age systems [6], [7], [10], [15], [25]. DDFS [4] and Sparse
Indexing [9] have been elaborated in Section 2.1 as two
well-known locality based deduplication approaches. Guo
and Efstathopoulos [21] also exploits backup-stream locality
with a progressive sampled indexing approach to achieve
about 97 percent of deduplication efficiency. ChunkStash
[11] stores the chunk fingerprints on an SSD instead of an
HDD to accelerate the index-lookup. It preserves the
backup-stream locality in the memory to increase the RAM
utilization and reduce accesses to on-disk/ssd index.
Cuckoo hash [22] is used by ChunkStash to organize the fin-
gerprint index in RAM, which is shown to be more efficient
than Bloom filters in DDFS.

The aforementioned locality-based approaches would
produce poor performance of deduplication in the case of
the data streams with little or no locality [10]. Several earlier
studies [17], [26] propose to exploit similarity characteristics
for small-scale deduplication of documents in the field of
knowledge discovery and database. Kulkarni et al. [2] pro-
pose a data reduction approach that breaks files into
chunks, deduplicates identical chunks, identifies similar
chunks among the remaining ones by a super-fingerprint
approach, and delta-encodes the similar chunks to further
save space. Aronovich et al. [27] exploit the similarity of
backup streams in mass deduplication systems. They divide
a data stream into large 16 MB blocks, construct signatures
to identify possibly similar blocks and then conduct the
byte-by-byte comparison to eliminate duplicate data.
Extreme Binning [10] exploits the file similarity for dedupli-
cation to apply to non-traditional backup workloads with
low-locality.

Compared with the existing work [4], [9], [10], [11], SiLo
complementarily makes full use of both similarity and local-
ity in backup streams to further boost data deduplication

throughput and minimize the RAM overhead. SiLo is in
part inspired by the Cumulus system [28] and Bimodal
Chunking algorithm [13]. Cumulus is designed for filesys-
tem backup over the Internet under the assumption of a
thin cloud [28]. It proposes the aggregation of many small
files to a segment to avoid frequent network transfers of
small files in the backup system, and implements a general
user-level deduplication. Bimodal Chunking [13] aims to
reduce the size of index by exploiting data-stream locality.
It merges some contiguous and duplicate chunks, produces
a chunk size that is about 2-4 times larger than that of gen-
eral algorithms, and finds more potential duplicate data
among the boundaries of duplicate chunks.

More recently, there have been increasing attentions
being paid to the load distribution of deduplication based
storage systems. HYDRAstor [25] performs the deduplica-
tion at a large-chunk (64 KB) granularity and distributes
data at the chunk level using distributed hash tables. Super-
chunk based data routing [12] exploits data similarity to
direct data routing at the super-chunk level while Extreme
Binning [10] mines file similarity for distributed storage.
Compared with these recent approaches, SiLo exploits both
similarity and locality to obtain a well-balanced load while
achieving near-exact deduplication at an extremely low
memory overhead.

As deduplication techniques are compute-intensive due
to their tasks of Rabin-based chunking and secure-signature
based fingerprinting, hash calculations are increasingly rec-
ognized as a potential bottleneck in high performance dedu-
plication systems. Guo and Efstathopoulos. [21] propose an
event-driven, multi-threaded client-server interaction
model to improve deduplication throughput. Shredder [29]
makes full use of GPU’s computational power to accelerate
the compute-intensive primitives of chunking and finger-
printing in deduplication based storage systems while P-
Dedupe [30] proposes an approach of composing pipelined
and parallel computations of data deduplication to run in
multicore processors.

6 CONCLUSION AND FUTURE WORK

To address the scalability of data deduplication and meet
increasing size of data storage scale in mass storage system,
we present SiLo, a similarity-locality based deduplication
system that exploits both similarity and locality in backup
streams to achieve higher deduplication throughput, well
balanced load, and near-complete duplicate elimination at
an extremely lower RAM overhead than existing state-of-
the-art approaches. Results from our prototype evaluation
driven by real-world data sets show that the SiLo similarity
algorithm significantly reduces the RAM usage, its locality
algorithm helps eliminate most of the duplicate data that is
missed by the probabilistic similarity detection, and its load
distribution algorithm obtains a well balanced load.

As our future work, we plan to study SiLo’ indexing
scheme in other deduplication applications such as cloud
storage and primary storage that is very different from
backup/archiving storage because of the relatively weak
locality and similarity in workloads and high sensitivity to
latency when implementing inline deduplication. More-
over, since the read/deletion operations are intuitively
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more frequent and important in primary storage deduplica-
tion [31], the research on read performance and garbage col-
lection on the deduplicated data will be an important and
promising research topic in deduplication based primary
storage systems.
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