
P-Dedupe: Exploiting Parallelism in Data
Deduplication System

Wen Xia†‡, Hong Jiang‡, Dan Feng†, *, Lei Tian‡, Min Fu†, Zhongtao Wang†

†
School of Computer, Huazhong University of Science and Technology, Wuhan, China

Wuhan National Lab for Optoelectronics, Wuhan, China
*

Corresponding author: dfeng@hust.edu.cn
‡
Dept. of Computer Science and Engineering,University of Nebraska-Lincoln, Lincoln, NE, USA

Abstract— Data deduplication, an efficient space reduction
method, has gained increasing attention and popularity in data-
intensive storage systems. Most existing state-of-the-art dedupli-
cation methods remove redundant data at either the file level
or the chunk level, which incurs unavoidable and significant
overheads in time (due to chunking and fingerprinting). These
overheads can degrade the write performance to an unacceptable
level in a data storage system. In this paper, we propose P-
Dedupe, a fast and scalable deduplication system. The main
idea behind P-Dedupe is to fully compose pipelined and parallel
computations of data deduplication by effectively exploiting the
idle resources of modern computer systems with multi-core and
many-core processor architectures. Our experimental evaluation
of the P-Dedupe prototype based on real-world datasets shows
that P-Dedupe speeds up the deduplication write throughput by a
factor of 2∼4 through pipelining deduplication and parallelizing
hash calculation and achieves 80%∼250% of the performance of
a conventional storage system without data deduplication.

I. INTRODUCTION

As the amount of digital data grows explosively, data

deduplication has gained increasing attention for its space-

efficient functionality that not only reduces the storage space

requirement by eliminating duplicate data but also minimizes

the transmission of redundant data in storage systems [1].

Deduplication uses a hash function (such as a SHA-1 or MD5

hash) to generate a hash signature, also called a fingerprint [2],

[1], to uniquely identify regions of data (e.g., files or pieces

of files) in the storage system. Due to the significant space-

efficiency, data deduplication is widely used in the commercial

data backup and archive storage systems [3], [4], [5].

Most existing deduplication solutions aim to remove du-

plicate data in the data storage systems using the traditional

chunk-level deduplication strategies. Despite of recent pro-

gresses in deduplication research [3], [6], [7], [8], [9], [10],

many challenges remain, particularly in the high performance

storage systems. One of the main challenges stems from the

time overheads incurred by deduplication that can impose a

severe write-performance bottleneck for deduplication-based

storage systems [11], [12], [13], [14], [15], [16]. This is

because the four stages of the traditional data deduplication

process, chunking, hashing for fingerprinting, indexing and

storing the fingerprints and data chunks, are time- and space-

consuming, where the chunking and hashing processes take

up significant CPU resources while fingerprints and their

index consume a great deal of RAM space. More specifically,

the Rabin-based chunking algorithm [17] and the SHA-1-

or MD5-based fingerprinting algorithm all need to compute

the hash digest, which may lengthen the write latency to

an unacceptable level in deduplication-based storage systems

[14], [18], [19], [15].

While hash calculations for deduplication are time consum-

ing and CPU-intensive, modern computer systems based on

multicore or manycore processor architectures are poised to

provide increasingly more CPU resources [13], [16]. On the

other hand, our study of the deduplication process, to be de-

tailed in Section II(B), indicates that the deduplication process

can be viewed and organized in terms of data units (such

as chunks and files) and functional units (such as chunking,

hashing and writing etc.) that are independent of one another.

Thus we can effectively utilize the idle CPU resources in

multicore-/manycore-based computer systems to fully pipeline

and parallelize the compute-intensive deduplication tasks (i.e.,

functional units) that are then fed by the deduplication data

units (e.g., data chunks and files).

To this end, we propose P-Dedupe, a deduplication system

that pipelines and parallelizes the compute-intensive dedupli-

cation processes to remove the write bottleneck. P-Dedupe

aims to remove the time overheads of hashing and shift the

deduplication bottleneck from the CPU to the DISK, so as to

easily embed data deduplication into a normal file system with

little or no impact on the write performance. Our experimental

evaluations of P-Dedupe, based on serevral real-world datasets,

show that the combination of deduplication pipelining and

parallelized hashing can accelerate the write throughput by

a factor of 2∼3 and 3∼4 with the Fix-Size Chunking and

Content-Defined Chunking algorithms respectively.

The rest of the paper is organized as follows. Section II

presents background and motivation for this research. Section

III describes the architecture and the algorithm of the P-

Dedupe system. Section IV presents our experimental eval-

uation of P-Dedupe and discusses the results. Section V gives

an overview of related work, and Section VI draws conclusions

and outlines our future work.

2012 IEEE Seventh International Conference on Networking, Architecture, and Storage

978-0-7695-4722-0/12 $26.00 © 2012 IEEE

DOI 10.1109/NAS.2012.46

338

II. BACKGROUND AND MOTIVATION

In this section, we first provide the necessary background for

deduplication research by introducing the existing challenges

facing deduplication based storage systems, and then motivate

our research by analyzing our observations based on extensive

experiments on deduplication process under real-world work-

loads.

A. Deduplication based Storage Systems

Although the deduplication technology has been researched

and developed for about ten years now and widely used in data

backup and archiving products [3], [4], [5], [20], it has only

recently started to emerge in the primary storage systems that

also have significant amounts of redundant data [21], [22].

In the last two years, the debut of two notable open-source

deduplication file system projects, namely, ZFS deduplication

[14] and Opendedup [18], show the increasing attention being

paid to deduplication in the storage systems. More recently,

the data deduplication technology has also been employed for

a number of promising primary storage applications, such as

SSD [11], [12], VM storage [23], VM migration [24], etc.

However,many of storage systems require a much higher

write throughput and employ deduplication primarily as an

additional storage-space optimization tool. As such, and more

importantly, the deduplication process must not consume too

much system resources, especially the execution time and

RAM space. One of the main challenges for high throughput

data deduplication is the significant time overhead that stems

from frequent hash calculations for chunking and finger-

printing in the data deduplication process, which lies in the

critical path of write operations [11], [13], [15]. Since hash

computation is CPU-intensive and thus time-consuming, data

deduplication can result in unacceptable write performance.

Currently, there are two general approaches to accelerat-

ing the time-consuming hash calculation and alleviating the

computing bottleneck, namely, hardware-based methods and
software-based. The former refers to employing a dedicated

co-processor to minimize the time overheads of computing

the hash function so that the deduplication-induced primary-

storage performance degradation becomes negligible or tol-

erable. A good example of the hardware-based methods is

Shredder [15] that makes full use of the computing power of

the GPGPU device to meet the computational demand of the

hash calculation in data-intensive storage systems. In addition

to relying on a dedicated hardware device such as GPGPU.

Deduplication approaches have recently been employed to

minimize the write traffic to the flash memory in SSD-based

primary storage [11], [12] where a dedicated co-processor is

used in the high-performance SSDs to minimize the hashing

latencies.

The software-based approaches exploit the parallelism of

data deduplication instead of employing faster computing

devices. Liu et al. [25] and Guo et al. [10] have attempted

to improve the deduplication performance by pipelining and

parallelizing the deduplication process. Nevertheless, their

approaches only improve the performance of Fixed Size

Fig. 1. The average throughputs of chunking (Rabin), fingerprinting
(Sha-256, Sha-1, MD5), writing (Write-8KB), CDC-based deduplication
(Rabin+Sha-1+Write) and FSC-based deduplication (Sha1+Write)

Chunking (FSC) based deduplication approaches. Because of

the internal content-dependency, it remains a challenge to fully

exploit the parallelism in the chunking and fingerprinting tasks

of the Content Defined Chunking (CDC) based deduplication

approaches.

B. Independence and Dependence

Since the computing power of single-core stagnates while

the throughput of storage devices continues to increase steadily

[40], the chunking and fingerprinting stages of deduplication

are becoming much slower than the writing stage in real-world

deduplication systems. Our experimental observation (Linux

environment, 7200rpm hard disk , 16 GB ram and 2.8GHz

Intel quad-core processor) based on real-world datasets, pre-

sented in Figure 1, shows the throughputs of 198MB/s,

345MB/s and 432MB/s for the chunking, fingerprinting and

writing stages respectively. Note that the write performance is

evaluated with existing caching schemes of file system, which

is much higher than existing HDD performance and can be

also achieved by other faster storage devices (e.g., SSD or

PCM).

Figure 1 also suggests that CDC-based deduplication

throughput drops to 102 MB/s due to the serial execution

of Rabin followed by Sha-1. To make things worse, with

increasing attention being paid to much stronger collision re-

sistant hash digest algorithms (e.g., Sha-256 and Sha-512) for

deduplication fingerprints, the throughput for the fingerprinting

stage is likely to suffer more significantly, as evidenced by

the Sha-256 throughput in Figure 1. Thus, we argue, the time-

consuming hash calculation will continue to be the main per-

formance bottleneck of data deduplication in storage systems.

Because the hash calculation is dependent on the content of

data streams, it is challenging to accelerate the chunking and

fingerprinting processes in a conventional manner.

Our experimental observations, as well as intuitions, suggest

that the deduplication tasks are independent of one another.

The chunk-level deduplication workflow typically consists of

the three stages of chunking, fingerprinting and writing. The

writing stage can be further divided into the three sub-stages

of looking up the index table, writing the chunk data, and

339

� � � �

� � � �

��	
�
�	
����

��	
�
�	
����

Fig. 2. The sliding window technique used in content defined chunking
algorithm. The hash of the sliding window, f, is computed using the Rabin
fingerprint algorithm. If the lowest log2S bits of the hash match a predeter-
mined value r (i.e., f mod S = r), the offset is marked as an anchor.

writing the metadata. Furthermore, all of these deduplication

stages can be considered individual tasks that are serially

operated on an independent unit of data chunk. In other words,

the fingerprinting of Chunk B can be done concurrently with

the writing of Chunk A. Therefore, the stages of chunking,

fingerprinting and writing can be pipelined. In addition, the

deduplication process also needs to update file metadata that

may be transferred over the network, which can be further

added to the deduplication pipeline.

C. Challenge of Parallel Chunking

Content-Defined Chunking algorithm is proposed to ad-

dress the the well known boundary-shift problem [1]: if one

data chunk in a file changes (e.g., insertion or deletion), its

subsequent data chunks will be all impacted, which dramat-

ically decreases the duplicate elimination by the Fixed-Size

Chunking approaches. CDC algorithm uses a sliding window

technique to move on the content of files and mark the chunk

boundary if the content of this sliding window satisfies their

pre-defined requirement as shown in Figure 2. Therefore, to

chunk a file V2 that is modified on the chunk C2 of file

V1, the Content-Defined Chunking algorithm can still identify

the correct chunking boundary of chunk C3 whose content

has not been modified. To study the duplicate elimination

of CDC and FSC approach, we use two real word datasets,

77 virtual machine images (e.g. VM) and 560 versions of

Linux (e.g. LINUX), which represent the workloads of large

files (237 GB) and small files (74 GB) respectively. Figure 3

shows our observation of duplicate elimination with those two

approaches, which well demonstrates that the CDC approach

works much better than FSC approach. Note that the com-

pleted duplicate files have been removed in our evaluation in

Figure 3 since both of CDC and FSC approaches can achieve

the same effect on the case of the duplicate files.

Since the Content Defined Chunking (e.g., Rabin chunking)

based deduplication approaches can find 10∼20% more dupli-

cate data than the fixed-size chunking approaches especially

when file modifications are stored [26], [21], [27], most

commercial deduplication products employ the CDC-based

approaches to efficiently eliminate duplicate data [3], [4].

Fig. 3. The duplicate elimination of Content-Defined Chunking approach
and Fixed-Size Chunking approach on two different datasets .

But CDC is time-consuming and thus undoubtedly further

degrades the write performance in deduplication based storage

systems (as shown in Figure 1). Exploiting parallelism of

chunking and minimizing the chunking overhead are becoming

increasingly urgent for deduplication in both primary and

secondary storage systems.
Parallelizing the chunking task, however, is non-trivial for

the CDC-based approaches. In fact, it is much more difficult

than parallelizing fingerprinting and may not be parallelized

in a conventional manner similar to the case of parallel

fingerprinting. For example, the Rabin-based chunking algo-

rithm follows a sliding window that is heavily dependent
on the content of the data stream, as illustrated in Figure 2.

More specifically, Rabin’s signature generation algorithm for

a sliding window (sequence B1,B2,...,Bα), is defined as:

Rabin(B1, B2, ..., Bα) = {
α∑

x=1

Bxp
α−x}modS

where S is the average chunk size and α is the number

of bytes in the sliding window. The Rabin-based algorithm is

very efficient since it is able to compute the signature in an

incremental fashion. For the substring in the sliding window,

the signature can be incrementally computed from the previous

value as follows:

Rabin(Bi, Bi+1, ..., Bi+α−1) =

{[Rabin(Bi−1, ..., Bi+α−2)−Bi−1P
α−1]p+Bi+α−1}modS

Thus, a chunk is not an independent data unit in the

CDC-based chunking stage, because the boundary (i.e., “cut”

point) dividing two adjacent chunks remains uncertain until

the current chunking for one of the chunks is complete. This

makes it very difficult to parallelize the chunking task in the

CDC-based approaches.
But, given the independence among the deduplication data

units (e.g., chunks and files) and among the deduplication

functional units (e.g., the fingerprinting and chunking tasks),

we believe that there is a great opportunity to first pipeline

the deduplication process while further parallelizing the time-

consuming tasks of fingerprinting and chunking, and effec-

tively exploit compute resources in modern computer systems

340

with multicore/mancore processor architectures, as analysed

below.

Given the time overheads due to the chunking, fingerprinting

and writing stages, denoted by Tc, Tf and Tw respectively.

Let D denote the deduplication factor (i.e., the compression

ratio), then Tw/D represents the amount of unique data (i.e.,

the actual amount of data) that needs to be written. The write

throughput of data storage systems without data deduplication

can be computed as follows:

Xput = 1/Tw

The traditional serial deduplication’s write throughput can

be computed as follows:

Xput = 1/(Tc + Tf + Tw/D)

The write throughput of a pipelined deduplication process

can be computed as:

Xput = 1/Max(Tc, Tf , Tw/D)

When we further parallelize the hash calculation by “N” par-

allel threads for deduplication, the dedupliation write through-

put can be estimated as:

Xput = 1/Max(
Tc

N
,
Tf

N
,Tw/D)

Thus, with sufficient hash-computation parallelism to make

“Tc/N” and “Tf /N” less than or equal to “Tw/D”, the dedu-

plication write throughput will be approximately D times the

normal write throughput without the data deduplication. Thus

the combination of pipelined deduplication and parallelized

hashing can significantly improve the deduplication write

performance and potentially completely remove the write

bottleneck in the deduplication based storage systems. Given

deduplication’s potential to accelerate the write performance

by reducing the write traffic, we believe that P-Dedupe will

be capable of speeding up the write performance in storage

system by a factor up to the deduplication factor D if it

completely eliminates the compute bottleneck of deduplication

by means of pipelining and parallelizing the chunking and

fingerprinting stages.

III. DESIGN AND IMPLEMENTATION

P-Dedupe is designed to be a high-write-throughput dedu-

plication system for data-intensive storage systems . In this

section, we will first describe the architecture of P-Dedupe,

followed by detailed discussions of its design and implemen-

tation issues.

A. System Architecture Overview

To provide an appropriate context for presenting the P-

Dedupe deduplication scheme that aims to remove the write

bottlenecks, this section describes the system architecture of P-

Dedupe. Note that the methods presented are general and can

be easily applied to other deduplication based storage systems.

�����
� �
���

�
���

����

����

��������������������

��	
��
�

��	
��
� �����
�

Fig. 4. P-Dedupe system architecture.

Figure 4 shows an overview of the P-Dedupe architecture,

which is made up of a stack of software components that

include:

• User Interface that provides the common file access

interface in the data storage systems.

• File Services that manage the name space and file meta-

data, where the file metadata need further update when

deduplication is finished.

• Deduplication Services that provide the pre-processes of

data deduplication, such as parallel chunking, parallel

fingerprinting, etc., for the input data stream. Deduplica-

tion Services exploit parallelism for the time-consuming

chunking and fingerprinting tasks by utilizing the idle

CPU resources of the multicore or manycore processors.

• Deduplication Manager that is responsible for managing

the fingerprint indexing of the input data stream. It

exploits the file semantics of file type, file size, file

similarity and locality in datasets by indexing the chunks’

fingerprints in P-Dedupe’s Similarity Hash Table and Lo-

cality based Cache [8], which are stored in the memory.

• Storage Manager that consists of three components,

namely, File Store, Hash Store and Chunk Store. Chunk

Store and File Store are responsible for storing the chunk

data and file metadata respectively, and Hash Store builds

the mapping relations between File Store and Chunk

Store after deduplication.

When a data stream enters the system, it goes through the

User Interface to the File Services layer and then stores the

file metadata. Deduplication Services break the data stream

into chunks and compute the fingerprints of these chunks.

Deduplication Manager detects a chunk’s fingerprint in the

Hash Table to determine if it is a new chunk. At the end, the

chunk information will be updated in File Store, Hash Store

and Chunk Store appropriately.

To read a data stream from the system, a client initiates

the read operation through the User Interface and the File

Services layer. Deduplication Manager obtains the chunk-to-

341

 �!�

"��� ������� "���� ������� "���� �������

 �!"���� �!� �!� �!"����

��	
�� ��	
�� ��	
�� ��	
�� ��	
��

 �!�

Fig. 5. Index relationship among File Store, Chunk Store and Hash Store in
the P-Dedupe system.

file mapping information from Hash Store according to the

file metadata in File Store. Then the chunks will be read

from Chunk Store according to the mapping information and

reconstructed into a file with file metadata. Figure 5 depicts the

index structures and the relationship among File Store, Chunk

Store and Hash Store. These three components efficiently build

an index mapping relationship between files and deduplicated

chunks in our P-Dedupe system. For example, when a chunk,

say, C2 of File2 is detected to be a duplicate of chunk C1

that is already stored in Chunk Store, instead of storing chunk

C2 in Chunk Store, the system only records the C1 mapping

information in MapFile2 in Hash Store. The read operation

will reconstruct File2 by reading MapFile2 and then reading

the deduplicated chunk C2.

B. Pipelining Deduplication

The conventional and typical deduplication process follows

sequential and serial tasks of chunking, fingerprinting, and

writing the chunk data and metadata, chunk-by-chunk and file-

by-file. Given the emerging multicore or manycore processor

architectures, which offer an abundance of compute resources

and parallelism, it is now possible to accelerate the dedupli-

cation process by pipelining and parallelizing its tasks.

The pipelining technique in P-Dedupe divides the deduplica-

tion process into 4 stages: (S1) chunking, (S2) fingerprinting,

(S3) indexing the fingerprints, and (S4) writing chunk data and

file metadata (including the chunk-to-file mappings). Because

deduplication runs on independent and contiguous chunks,

the pipeline can run on the data units of chunks in the

deduplication process. The chunk-based deduplication pipeline

separates the CPU-intensive tasks, stages S1 and S2, from the

I/O-intensive tasks, stages S3 and S4, as shown in Figure 4.

This pipelined approach avoids the time waiting on the serial

and time-consuming chunking and fingerprinting operations

and significantly improves the deduplication throughput in

storage systems.

As another type of data units in deduplication, the files

can also be processed in the deduplication pipeline, especially

when a data stream consists of a large number of small

files. The chunk- and file-based pipeline further reduces the

unnecessary time waiting on updating file metadata, thus

maximizing the efficiency of the deduplication pipeline.

Although our deduplication pipeline is designed for the

typical deduplication approaches based on Content Defined

Chunking (CDC) (e.g., Rabin-based chunking algorithm [17]),

it can also be easily adopted to the deduplication approaches

based on Fix-Size Chunking (FSC) or the whole-file granular-

ity, for which the first stage of “chunking”(S1) in the above

pipeline would be removed.

C. Parallelizing Fingerprinting

Although the deduplication pipeline separates the CPU-

intensive tasks from the I/O-intensive tasks to allow multi-

threading, the chunking and fingerprinting threads are still the

bottlenecks of the P-Dedupe system as indicated in Figure

4 and Section 2.2. As mentioned earlier, the bottleneck of

hash calculation can also be removed by parallelizing on the

multicore or manycore processors since the data chunks and

files, the subjects of hashing, are independent of one another.

The main challenge for parallel fingerprinting lies in the fact

that the output order of chunks’ computed hash values must

be the same as the order in which chunks arrive (i.e., the

order of chunks in a file) so as to feed into the next stage

of the pipeline (i.e., indexing the hash table and writing data

chunks) correctly. For example, the pipeline input of chunks

at the parallel fingerprinting stage follows the order of A-

B-C, the parallel hash computations of these three chunks

by three independent threads may render an out-of-order

completion (such as A-C-B or B-A-C) due to the dynamic

multicore/manycore runtime conditions and the variable chunk

size. Thus, a synchronization of the fingerprinting threads must

be introduced in the pipeline to make sure that the chunks’

hash values are fed to the Stage 3 (S3) of the pipeline in the

correct order in the P-Dedupe system.

D. Parallelizing Chunking

The most challenging issue in parallelizing deduplication

task lies in the Rabin-based Chunking (CDC) algorithm, which

uses a sliding window on the data stream as depicted in Figure

2. Since the chunking task cannot be parallelized between two

adjacent chunks because of content dependency between them,

we propose to parallelize the chunking of different substreams

of the same data stream, which we call data “sections”, of

appropriate length (e.g., 128KB) that may contain a large

number of chunks. P-Dedupe divides a data stream into

multiple data sections, where each section is used to chunk a

corresponding portion of the data stream and the size of each

section must be larger than the maximum chunk size defined

in the CDC algorithm. It then applies the CDC algorithm

on the data sections in parallel. When the data sections are

chunked individually, the boundaries of the sections need some

subtle modifications. More specifically, the ends of the parallel

sections are automatically considered as the chunk boundaries

by the parallel CDC algorithm, which is not the case in the

sequential CDC algorithm.

For example, Sections A and B in Figure 6 are chunked to

produce chunks C1 ∼ Cn and D1 ∼ Dn respectively, then the

342

�� �� �� ��

#� #�

#� #�

�

#� #�

$�%�	
��
�

�&�'�������
��	
��
�

�&������	
�����
(�
��
�

#������%��
�)

#������%��
��

#������%��
�) #������%��
���&��
!	��#���
������

Fig. 6. The parallel chunking algorithm runs with two threads. The data
stream is divided to Section A and Section B. The boundaries of Sections A
and B are re-chunked at the end of the chunking process.

#��*

#���
��%��
�

#���
��%��
�

��	
����

��	
���

��	
���

��	
���

��	
���

��	
���

����

����

������� 	
�����
����

��	
���

��	
���

��	
���

��	
���

��	
���

��	
���

�
���

+����

���������

Fig. 7. An example showing the asynchronous executions of the parallel
chunking and fingerprinting algorithms respectively with multiple threads in
the deduplication pipeline.

last portion of the data in Sections A from the last “cut” point,

Cn, may be considered a “tentative chunk” because the hash

digest of the sliding window does not meet the condition (see

Figure 2). The real boundary of chunk Cn may be located

inside D1, and the system needs to re-chunk the portion of

data consisting of the two serial chunks, Cn and D1.

In fact, only the last α-1 bytes of chunk Cn (sequences

of bytes {X1,...,Xα−1}) and the first α-1 bytes of chunk D1

(sequences of bytes { Y1,...,Yα−1}) need to be recomputed

to generate the Rabin signature if we assume the sliding

window size of α. More specifically, P-Dedupe will mark a

new “cut” point among the string { Cn , D1} if any Rabin

signatures fi satisfies the conditions fi mod S = r in substring

(X1,...,Xα−1,Y1,...,Yα−1).. Note that this ”divide and conquer

and connect” approach can be easily applied to more data

sections than the two in the example, resulting in any number

of parallel threads. As a result, the parallel chunking approach

achieves the same effect of the sequential Content-Defined

Chunking while linearly reducing the time overheads with

multi-threading.

E. Synchronous vs. Asynchronous Schemes in deduplication
parallelization

The P-Dedupe scheme combines parallel chunking and

parallel fingerprinting to remove the bottleneck of the dedu-

plication pipeline, as depicted in Figure 7. A dilemma ensues,

however, with the execution in Stages 1 and 2 of parallel

tasks on chunks of variable lengths (due to CDC) and on

processing cores with dynamic load conditions. That is, as

shown in Figure 7, a purely asynchronous execution of the

parallel chunking and fingerprinting tasks can cause serious

file fragmentation, where chunks of a file or files enter the

pipeline in the order that makes them contiguous in storage

but exit the Fingerprinting stage of the pipeline completely

out of order. This causes the chunks of a file to be scattered

randomly in storage, destroying the sequentiality that is crucial

for the write performance of the next stages (S3 and S4) and

resulting in unacceptable write and read performances in high

performance storage. On the other hand, a purely synchronous

execution of these tasks can lead to significant idle waiting for

the slowest thread in each statge, again seriously degrading the

pipeline performance.

We resolve this dilemma by striking a good balance be-

tween synchronization and asynchronization, and making the

executions of parallel sections synchronous and the executions

of parallel chunks asynchronous. More specifically, this hybrid

scheme will only make the chunks out of order within a section

of the data stream after S1 and S2 but maintains the sequential

order among the data sections of the data stream, which can

achieve a performance comparable to the sequential order but

without the idle waiting of the purely synchronous execution.

This is because the out-of-order impact of chunks within each

section can be almost fully absorbed by the existing caching

schemes of file system caches. Our evaluation in Section 4

validates the effectiveness of this hybrid scheme.

It must be noted that, while the FSC-based approaches and

whole-file deduplication are spared of the chunking bottleneck

(i.e., they do not need chunking), they stand to benefit from

parallel fingerprinting in the same way as the CDC-based

approaches.

IV. PERFORMANCE EVALUATION

In order to evaluate P-Dedupe, we have implemented a

prototype of the P-Dedupe system that allows us to examine

the performance impact and sensitivity of several important

design parameters to provide useful insights into the design of

deduplication-based storage system. The evaluation is driven

by several real-world datasets that represent different workload

characteristics in deduplication systems..

A. Experimental Setup

We use a standard server configuration to evaluate the

deduplication performance of the P-Dedupe system running

on a Linux environment. The hardware configuration includes

an Intel quad-core and eight-thread CPU running at 2.8GHz

with a 1MB L2 cache, a 16 GB RAM, and a 1TB 7200rpm

hard disk.

Note that our evaluation of the system throughput is mea-

sured by the write speed at which the input data is transferred,

deduplicated and stored. As our experimental datasets are

directly collected from the local server, we run on the datasets

multiple times to obtain stable results of the write throughput.

We also compare the write throughputs of systems with

343

deduplication and without deduplication to evaluate the effec-

tiveness of P-Dedupe’s pipelined deduplication and parallel

hashing. The RAM usage in our evaluation is obtained by

recording the space overhead of index-lookup. The duplicate

elimination performance metric is defined as the percentage

of duplicate data eliminated by the system.

Since there are still lots of deduplication systems that

employ the Fix-Size Chunking (FSC) approaches[10], [18],

[14] we implement both a Fix-Size Chunking algorithm and

a Content-Defined Chunking (CDC) algorithm in our P-

Dedupe system to more comprehensively and fairly evaluate

our approach. The datasets of SMF and VM which has been

described in section II(C) represent workloads of different

object and file sizes in deduplication based storage systems.

Both datasets have two versions in our evaluation, the N and D

versions, where the former (i.e., SMF-N and VM-N) represent

the datasets that are almost completely new as they are written

to storage system for the first time, while the latter (i.e., SMF-

D and VM-D) represent the datasets that are almost completely

redundant as they are duplicated in the storage system. We

mainly use 8 Linux versions and 1 VM image to evaluate

the sensitivity of our pipeline and parallel schemes to various

design parameters, such as hash threads, chunk sizes, FSC

or CDC, etc. In fact, the evaluation of a few other large

datasets on the P-Dedupe system shows consistent results with

the above datasets. The VM dataset is downloaded from the

website [28]. The SMF dataset is also downloaded from the

website [29] and consists of 560 Linux versions from versions

2.0.1 to 3.2.9, which represents the characteristics of typical

source code files.

B. Impact of Pipelining Deduplication

We first compare the pipelined deduplication techniques

with serial deduplication across a range of datasets. Fig-

ure 8 shows the deduplication write speed of our pipelined

approaches under the FSC and CDC chunking algorithms

respectively.

(a) Pipelined vs. serial with Fix-Size
Chunking

(b) Pipelined vs. serial with Content
Defined Chunking

Fig. 8. Comparison between serial deduplication and pipelined deduplication
with FSC and CDC on four datasets in the P-Dedupe system.

Figure 8 (a) shows that the pipelined deduplication with the

FSC algorithm works the best on the VM-N dataset whose

average file size is the largest, since the pipeline separates

the CPU-intensive tasks from the I/O-intensive tasks. But

the pipelined deduplication only obtains very small improve-

ments in the write-throughput performance on other three

Fig. 9. The performance of the parallel fingerprinting approach, with the
FSC algorithm, on the four datasets in the P-Dedupe system.

datasets, since the hash calculations for fingerprints remain

the main bottleneck of the pipeline. Figure 8 (b) shows

that the pipelined deduplication with the CDC algorithm

nearly doubles the write-throughput performance under all

four datasets with pipelining the hash calculation of chunking

and fingerprinting in the deduplication process. Because the

pipelined deduplication alleviates the deduplication bottle-

necks from the time-consuming hash calculation of the CDC

algorithm, the pipelined CDC-based deduplication achieves a

write-throughput performance that is similar to that of the

pipelined FSC-based deduplication shown in Figure 8 (a) and

(b).

C. Impact of Parallel Fingerprinting

This subsection presents evaluation results on the impact

of parallelizing the compute-intensive tasks of fingerprint-

ing in FSC-based deduplication. Parallelizing chunking and

fingerprinting can further improve the performance of the

pipelined deduplication by removing the pipeline bottlenecks.

The parallel unit of deduplication, namely, the average chunk

size is also evaluated for P-Dedupe system.

Figure 9 shows that the write throughput of P-Dedupe

achieves a near linear speedup for the four datasets as the

number of parallel-fingerprinting threads increases from 1 to

16. But the speedup flattens out beyond 4 threads since the

bottleneck of the P-Dedupe system shifts from the finger-

printing task to others (e.g., including, possibly writing to the

disk, synchronizing the threads, etc.). From Figure 9, we also

find that the deduplication write speedup is around 2∼3.66 on

datasets SMF-D, VM-N and VM-D. The deduplication write

speedup exceeds 3.5 on the VM-D dataset while fingerprinting

with 8 threads. This is because deduplication’s ability to

reduce the write traffic for datasets with redundant data [11],

[12].

Figure 10 shows the performance of parallel fingperprinting

approach of FSC based deduplication as a function of different

chunk size on four datasets. The larger the chunk size, the

faster the write speed our P-Dedupe has, But P-Dedupe get

limited improvement of write performance with more than

16KB chunk size on the small file datasets. Note that the

duplicate elimination is inversely proportional to the chunk

size [21]. Thus the 8KB or 16KB could be a good choice for

deduplication based storage system.

344

Fig. 10. The performance of the 4 threads parallel fingerprinting as a function
of different chunk size on the four datasets in the P-Dedupe system.

(a) Parallel chunking and fingerprint-
ing on SMF-D.

(b) Parallel chunking and fingerprint-
ing on VM-D.

Fig. 11. The deduplication write throughput performance of P-Dedupe as a
function of the number of parallel chunking threads and the number of parallel
fingerprinting threads, with the CDC algorithm, on two datasets.

D. Impact of Parallel Chunking

Figure 11 shows that the deduplication write throughput

increases with the number of parallel chunking and fingerprint-

ing threads in the P-Dedupe system. More importantly, with

an equal number of chunking and fingerprinting threads, the

P-Dedupe pipeline achieves a good load balance among all the

pipeline stages and thus achieves the highest write throughput.

On the other hand, when the number of chunking threads

exceeds the number of fingerprinting threads, the maintenance

and synchronization overheads of the former threads will

cause the P-Dedupe pipeline to stall, thus decreasing the write

throughput.

Figure 12 shows that the write throughput of CDC-based

P-Dedupe achieves a near-linear speedup for the four datasets

as the number of parallel-chunking threads increases from 1

to 16 in our 4-core evaluation platform. This performance

improvement stems from our parallel chunking algorithm that

Fig. 12. The parallel chunking performance, with the CDC algorithm and 16
parallel fingerprinting threads, on the four datasets in the P-Dedupe system
while chunking is synchronous and fingperprinting is asynchronous.

(a) Write throughput Performance. (b) Read throughput Performance.

Fig. 13. The parallel chunking and fingerprinting performance of P-Dedupe
under the four datasets as a function of asynchronous, synchronous and
the hybrid synchronization scheme (i.e., synchronous section chunking and
asynchronous chunk fingerprinting)

(a) Fix-Size Chunking. (b) Content Defined Chunking.

Fig. 14. Comparison of write efficiency between serial, pipeline and P-
Dedupe with FSC and CDC approaches.

divides the input data stream into large data sections, chunking

these data sections individually and then re-chunking the

boundaries of data sections. In addition, the hybrid synchro-

nization scheme for chunking and fingerprinting is able to

keep deduplication pipeline fully fed, thus achieving a near-

linear speedup of the deduplication throughput. By effectively

exploiting thread-level parallelism through pipelining and par-

allel hashing, the CDC-based P-Dedupe achieves a write-

throughput speedup of 2.8 ∼ 4.2 over the serial deduplication.

Figure 13 also shows that P-Dedupe with the hybrid syn-

chronization scheme, i.e., synchronous chunking combined

with asynchronous fingerprinting, achieves a comparable per-

formance on both write and read throughput to the other

two schemes (i.e. asynchronous and synchronous). Although

the synchronous chunking and asynchronous fingerprinting

will result in out-of-order completion and storing of chunks

within a section, the intra-section impact can be well absorbed

by existing caching approaches in file systems, achieving a

data read performance comparable to that of the in-order

case. Figure 13 (a) shows that the hybrid synchronization

scheme achieves the write performance near to the scheme

of completed synchronization scheme of chunking and fin-

gerprinting. Figure 13 (b) shows that read performance on the

data deduplicated by the hybrid synchronization scheme is also

near to the read performance on the data deduplicated by the

absolute asynchronization scheme, namely, the in order case,

Figure 14 shows that the FSC and CDC based serial dedu-

plications only achieve respectively 40% and 20% of the write

efficiency of a system without deduplication, while P-Dedupe

achieves 80% ∼ 250% of the deduplication write efficiency of

345

a non-deduplication system by fully and effectively exploiting

parallelism in chunking and fingerprinting for deduplication

system. Therefore, P-Dedupe is able to minimize the write

performance degradation induced by the compute overhead of

deduplication in storage system. In addition, we observe that

deduplication can potentially improve the write performance

if there is enough duplicate data as shown in the workload of

VM-D of Figure 14.

V. RELATED WORK

Chunk-based deduplication is the most widely used dedu-

plication method for secondary storage. Such a system breaks

a file into contiguous chunks and eliminates duplicate chunks

by identifying hash digests (e,g. SHA-1 and MD5) of chunks

[2], [1]. Numerous studies have investigated deduplication

approaches using fix-size chunking [2], [23], [21], content-

defined chunking [26], [1] and bimodal chunking [30]. Gen-

erally, the content-defined chunking approaches can improve

duplicate elimination when small file modifications are stored.

A recent study [21] shows that the CDC approach removes

10% more duplicate data than the FSC approach in their

primary storage datasets.

The scalability of deduplication approaches has become an

increasingly important issue in mass storage systems, which

face potentially severe fingerprint-lookup disk bottleneck with

increasing data volumes. DDFS [3] is one of the earliest

studies on the idea of exploiting the inherent backup stream

locality to reduce accesses to on-disk index and avoid disk

bottleneck of inline deduplication. Sparse Indexing [4] is

an approximate deduplication solution that uses a sampling

technique to reduce the size of fingerprint index in the memory

and only requires about half of the RAM usage of DDFS. But

its duplicate elimination and throughput is heavily dependent

on the sampling data and chunk locality of the backup streams.

ChunkStash [7] stores the chunk fingerprints on an SSD

instead of an HDD to accelerate the index-lookup. It also

exploits backup-stream locality and uses Cuckoo Hash to

organize the fingerprint index in RAM, which is shown to

be more efficient than the Bloom Filters used in DDFS [3].

Recently, data deduplication in primary storage has been

gaining increasing attention due to its ability to save storage

space and reduce write. Both the CA-SSD [12] and CAFTL

[11] schemes are novel deduplication-based SSD primary

storage systems in that they increase the effective SSD space

and improve write performance by removing unnecessary

duplicate writes and eliminating duplicate data. VMFlock [24]

is a deduplication-based virtual machine (VM) co-migration

solution, which not only achieves a high compression ratio

but also enables faster VM migration by deduplicating VM

images. In addition, data deduplication has also emerged in

open-source software projects, namely, ZFS dedupe [14] and

Opendedup [18]. We also believe that the parallelism schemes

of P-Dedupe can be used to boost the deduplication write

throughput and scalability of those two approaches since both

of them face the hashing challenges.

Increasing attentions are being paid to the hash calculation

bottleneck in deduplication systems. Guo et al.[10] propose an

event-driven, multi-threaded client-server interaction model to

improve deduplication throughput. It also introduces schemes

of progressive sampled indexing and grouped mark-and-sweep

to improve the single-node deduplication scalability. The GPU

technology has been also shown to offer stronger compute

power than CPU for many data-intensive (e.g., data-parallel)

applications, especially for the application of hash and cryp-

tographic calculation in storage systems. StoreGPU [13], [19]

and Shredder [15] make full use of GPU’s computational

power to accelerate popular compute-intensive primitives in

distributed storage systems.

P-Dedupe is in part inspired by THCAS [25], an optimiza-

tion method to improve performance in deduplication storage

system. THCAS adopts a storage pipeline and parallelizes

calculation of fingerprints. THCAS divides a chunk into 4

sub-chunks and parallelizes hash calculations of sub-chunks,

which may increase the hash collisions of hash algorithm. P-

Dedupe is significantly different from THCAS in a number

of notable ways. First, THCAS pipelines the deduplication

process between files while P-Dedupe pipelines both inter-

files and intra in the data stream. Second, THCAS parallelizes

hash calculation of sub-chunks while P-Dedupe parallelizes

the fingerprinting of chunks. Third, THCAS is unable to

parallelize CDC-based chunking while P-Dedupe parallelizes

CDC-based chunking and combines parallel fingerprinting and

chunking to accelerate write performance nearly linearly.

VI. CONCLUSIONS AND FUTURE WORK

In this paper, we propose P-Dedupe, an efficient and

scalable deduplication system that exploits parallelism in the

deduplication process in storage systems. P-Dedupe divides

the deduplication tasks into four stages and pipelines the four

stages with the data units of chunks and files. P-Dedupe also

proposes parallel chunking and fingerprinting algorithms to

further remove the hash calculation bottleneck of deduplication

in high performance storage systems. By effectively exploiting

parallelism of deduplication tasks and hash calculation, P-

Dedupe is able to make the full use of the idle compute

resources in multicore- or manycore-based computer systems

to effectively remove the deduplication write bottleneck in

deduplication based storage systems.

P-Dedupe is shown to effectively improve the write through-

put performance and scalability of deduplication-based storage

systems. Its general philosophy of pipelining deduplication

and parallelizing hashing is well poised to fully embrace the

industry trend of building multicore and manycore proces-

sors. With the quad-core and eight-core CPU becoming the

mainstream in modern computer systems, the exploitation of

CPU resource can easily remove the computing bottlenecks

of deduplication based storage systems. With the removal of

the deduplication bottlenecks in storage system, it may not be

long before data deduplication becomes mainstream in high

performance storage systems.

346

As the number of cores of chip multiprocessors increases

with the new “Moore’s law”, the storage systems may require

higher deduplication throughput because of the incorporation

of faster storage devices (e.g., SSD or PCM). Thus P-Dedupe

must consider exploiting more thread-level parallelism on pro-

cessors with more cores and address more potential challenges

due to much higher parallelism, which are considered as our

future work.

VII. ACKNOWLEDGMENTS

This work was supported by Chinese 973 Program of

under Grant No.2011CB302301, Changjiang innovative group

of Education of China No. IRT0725, National Natural Sci-

ence Foundation of China (NSFC) under Grant 61025008

and 61173043, and the US NSF under Grants NSF-CNS-

1116606, NSF-CNS-1016609, NSF-IIS-0916859 and NSF-

CCF-0937993. The authors are also grateful to anonymous

reviewers for their feedback and guidance.

REFERENCES

[1] A. Muthitacharoen, B. Chen, and D. Mazieres, “A low-bandwidth
network file system,” in Proceedings of the eighteenth ACM symposium
on Operating systems principles. ACM, 2001, pp. 174–187.

[2] S. Quinlan and S. Dorward, “Venti: a new approach to archival storage,”
in Proceedings of the FAST 2002 Conference on File and Storage
Technologies, vol. 4, 2002.

[3] B. Zhu, K. Li, and H. Patterson, “Avoiding the disk bottleneck in the data
domain deduplication file system,” in Proceedings of the 6th USENIX
Conference on File and Storage Technologies. USENIX Association,
2008, pp. 1–14.

[4] M. Lillibridge, K. Eshghi, D. Bhagwat, V. Deolalikar, G. Trezise, and
P. Camble, “Sparse indexing: large scale, inline deduplication using
sampling and locality,” in Proccedings of the 7th conference on File
and storage technologies. USENIX Association, 2009, pp. 111–123.

[5] L. Aronovich, R. Asher, E. Bachmat, H. Bitner, M. Hirsch, and S. Klein,
“The design of a similarity based deduplication system,” in Proceedings
of SYSTOR 2009: The Israeli Experimental Systems Conference. ACM,
2009, pp. 1–14.

[6] D. Bhagwat, K. Eshghi, D. Long, and M. Lillibridge, “Extreme binning:
Scalable, parallel deduplication for chunk-based file backup,” in Mod-
eling, Analysis & Simulation of Computer and Telecommunication Sys-
tems, 2009. MASCOTS’09. IEEE International Symposium on. IEEE,
2009, pp. 1–9.

[7] B. Debnath, S. Sengupta, and J. Li, “ChunkStash: speeding up inline
storage deduplication using flash memory,” in Proceedings of the 2010
USENIX conference on USENIX annual technical conference. USENIX
Association, 2010, p. 16.

[8] W. Xia, H. Jiang, D. Feng, and Y. Hua, “SiLo: A Similarity-Locality
based Near-Exact Deduplication Scheme with Low RAM Overhead and
High Throughput,” in Proceedings of the 2011 conference on USENIX
Annual technical conference. USENIX Association, 2011.

[9] W. Dong, F. Douglis, K. Li, H. Patterson, S. Reddy, and P. Shi-
lane, “Tradeoffs in scalable data routing for deduplication clusters,”
in Proceedings of the 9th USENIX Conference on File and Storage
Technologies, 2011.

[10] F. Guo and P. Efstathopoulos, “Building a High-performance Deduplica-
tion System,” in Proceedings of the 2011 conference on USENIX Annual
technical conference. USENIX Association, 2011.

[11] F. Chen, T. Luo, and X. Zhang, “CAFTL: A content-aware flash
translation layer enhancing the lifespan of flash memory based solid
state drives,” in FAST11: Proceedings of the 9th Conference on File and
Storage Technologies. USENIX Association, 2011.

[12] A. Gupta, R. Pisolkar, B. Urgaonkar, and A. Sivasubramaniam, “Lever-
aging Value Locality in Optimizing NAND Flash-based SSDs,” in
FAST11: Proceedings of the 9th Conference on File and Storage
Technologies. USENIX Association, 2011.

[13] A. Gharaibeh, S. Al-Kiswany, S. Gopalakrishnan, and M. Ripeanu,
“A gpu accelerated storage system,” in Proceedings of the 19th ACM
International Symposium on High Performance Distributed Computing.
ACM, 2010, pp. 167–178.

[14] ZFS-Deduplication, “http://bit.ly/bsT60L.”
[15] P. Bhatotia, R. Rodrigues, and A. Verma, “Shredder: Gpu-accelerated

incremental storage and computation,” in USENIX Conference on File
and Storage Technologies (FAST), 2012.

[16] W. Xia, H. Jiang, D. Feng, and L. Tian, “Accelerating data deduplication
by exploiting pipelining and parallelism with multicore or manycore
processors,” in Proceedings of the Tenth USENIX Conference on File
and Storage Technologies (FAST poster session), 2012.

[17] M. Rabin, Fingerprinting by random polynomials. Center for Research
in Computing Techn., Aiken Computation Laboratory, Univ., 1981.

[18] opendedup, “http://www.opendedup.org/.”
[19] S. Al-Kiswany, A. Gharaibeh, E. Santos-Neto, G. Yuan, and M. Ripeanu,

“Storegpu: exploiting graphics processing units to accelerate distributed
storage systems,” in Proceedings of the 17th international symposium
on High performance distributed computing. ACM, 2008, pp. 165–174.

[20] L. You, K. Pollack, and D. Long, “Deep store: An archival storage sys-
tem architecture,” in Proceedings of the 21st International Conference
on Data Engineering. IEEE Computer Society, 2005.

[21] D. Meyer and W. Bolosky, “A study of practical deduplication,” in
FAST’11: Proceedings of the 9th Conference on File and Storage
Technologies, 2011.

[22] K. Srinivasan, T. Bisson, G. Goodson, and K. Voruganti, “idedup:
Latency-aware, inline data deduplication for primary storage.”

[23] K. Jin and E. Miller, “The effectiveness of deduplication on virtual
machine disk images,” in Proceedings of SYSTOR 2009: The Israeli
Experimental Systems Conference. ACM, 2009, pp. 1–12.

[24] S. Al-Kiswany, D. Subhraveti, P. Sarkar, and M. Ripeanu, “Vmflock:
Virtual machine co-migration for the cloud,” in Proceedings of the
20th ACM International Symposium on High Performance Distributed
Computing. ACM, 2011.

[25] C. Liu, Y. Xue, D. Ju, and D. Wang, “A novel optimization method
to improve de-duplication storage system performance,” in 2009 15th
International Conference on Parallel and Distributed Systems. IEEE,
2009, pp. 228–235.

[26] C. Policroniades and I. Pratt, “Alternatives for detecting redundancy
in storage systems data,” in Proceedings of the annual conference on
USENIX Annual Technical Conference. USENIX Association, 2004,
p. 6.

[27] J. Min, D. Yoon, and Y. Won, “Efficient deduplication techniques for
modern backup operation,” Computers, IEEE Transactions on, no. 99,
pp. 1–1, 2011.

[28] VM-dataset, “http://bit.ly/TKjna.”
[29] Linux-dataset, “http://bit.ly/9HmdXP.”
[30] E. Kruus, C. Ungureanu, and C. Dubnicki, “Bimodal content defined

chunking for backup streams,” in Proceedings of the 8th USENIX
conference on File and storage technologies. USENIX Association,
2010, p. 18.

347

