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1. Introduction

Data reduction has become increasingly important in storage systems due to the explosive growth of digital data in the
world. As a result of this “data deluge”, effectively managing storage and reducing its costs have become one of the most
challenging and important tasks in mass storage systems. One of the space-efficient approaches for storage management is
delta compression that can effectively eliminate the redundancy among similar data blocks and files, which not only reduces
data storage requirement [ 1-5], but also accelerates the network transmission of redundant data [6-10].

Broadly speaking, there are mainly three categories of lossless data reduction technologies in storage systems, namely,
traditional compression (e.g., GZIP compression [11]), delta compression [12,13], and data deduplication [6,14]. Traditional
compression approaches reduce data at the byte/string level based on classic algorithms such as Huffman coding [15] and
dictionary coding [16,17]. On the other hand, deduplication approaches eliminate redundancy at the chunk/file level by
dividing data streams into chunks with Content-Defined Chunking (CDC) [6,18] and identifying duplicate chunks by their
secure SHA-1/MD5 fingerprints [14], which has been demonstrated to offer very high scalability in backup/archival storage
systems [19,20].
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Delta compression, however, has been gaining increasing attention in recent years for its ability to remove redundancy
among non-duplicate but very similar data files and chunks, for which the data deduplication technology often fails to
identify and eliminate. Shilane et al. [9] propose a WAN optimized replication approach that combines deduplication, delta
compression, and GZIP compression to maximally remove redundancy to accelerate the transmission of backup datasets.
Difference Engine [2] and [-CASH [3] make full use of the delta compression technology to eliminate content redundancy in
memory pages and SSD caches respectively. DropBox [21,22,10] employs delta compression to calculate the modified areas
of the updated files to accelerate the file-upload operations.

One of the main challenges facing the delta compression technology is the time-consuming process of locating duplicate
and similar data chunks and calculating the differences among similar data chunks, a worsening problem in face of the
steadily increasing storage and network bandwidth and speed [3,4]. This is because the state-of-the-art delta compression
techniques, such as Xdelta [12] and Zdelta [13], use a method similar to that of the traditional lossless compression
approaches, namely, a byte-wise sliding window to identify matched (i.e., duplicate) strings between the source (or base)
chunk and the target (or input) chunk for the delta calculation, which is very time-consuming.

Inspired by the high duplicate-detection scalability of the deduplication technology that employs Content-Defined
Chunking (CDC) [18] to divide data stream into several independent and non-overlapping chunks, we believe that the CDC
technique can be leveraged to help simplify delta compression’s difference (delta) calculation by efficiently dividing the base
and input chunks into smaller independent and non-overlapping strings and then detecting duplicates among these strings.

Unfortunately, there is a trade-off between the computation overhead and compression ratio [13]. While a CDC-based
approach helps reduce the number of strings for delta calculation, the compression ratio often suffers because the CDC-
based approach’s identification of the chunking boundary can be inaccurate and thus lead to failure in identifying similar
but non-duplicate strings (e.g., two very similar strings with only a few bytes being different). To address this problem, we
are inspired by recent studies on content locality of redundant data [7,19,23,24] to fully exploit this property by searching
regions immediately adjacent to the confirmed duplicate strings by the CDC approach to detect more duplicate content, thus
improving the compression ratio.

In this paper we present Ddelta, a deduplication-inspired fast delta compression approach to simplifying and thus
accelerating the process of duplicate identification between similar data files and chunks. The salient features of our Ddelta
technique include:

e A Gear-based chunking algorithm that quickly divides similar data chunks into smaller, independent and non-
overlapping strings. Gear-based chunking directly uses the re-hashed ASCII values of the data content with only two
simple operations (i.e., one shift and one addition) for fast chunking, which cuts more than half of the calculation
operations required by Rabin-based chunking [18,6] while achieving similar hashing and chunking efficacy.

o Aweaker but faster Spooky-based fingerprinting approach to duplicate identification among strings. If the strings’ Spooky
hashes match, their content is further verified for duplicates by an in-RAM byte-wise comparison (i.e., using the C function
memcmp() that compares two strings).

e A greedy byte-wise scanning approach to searching the areas adjacent to those already identified duplicate strings
to hopefully find more redundancy. This is based on the known and observed content locality of data redundancy,
i.e., areas/regions immediately adjacent to duplicates tend to have higher probability of being duplicates or similar
themselves [23,24].

Our experimental results, based on real-world datasets, show that Ddelta achieves speedups of 2.5x-8x in delta
encoding speed and 2x-20x in delta decoding throughput over Xdelta and Zdelta, while achieving a comparable level of
compression ratio. In addition, the Gear-based chunking approach achieves a speedup of about 2.1x over the Rabin-based
chunking, which helps accelerate both chunking and duplicate detection in Ddelta.

The rest of the paper is organized as follows. Section 2 presents background and motivation for this work. Section 3
describes in detail the novel delta encoding schemes of Ddelta. Section 4 presents our experimental evaluation of a Ddelta
prototype and two case studies. Section 5 draws conclusions and provides directions for future work.

2. Background and motivation

2.1. Delta compression and other data reduction approaches

Delta compression is becoming increasingly popular in storage systems as a space-efficient approach to data manage-
ment. It can be more space-efficient than data deduplication in removing redundancy among similar and frequently modi-
fied data files and chunks. Table 1 shows a comparison among traditional lossless compression, delta compression, and data
deduplication.

Since traditional lossless compression, delta compression, and data deduplication target different kinds of data
for redundancy, they use different techniques to reduce data. As a typical lossless compression approach, the GZ
compression [11,25] employs both the byte-level Huffman coding [15] and string-level dictionary coding (e.g., LZ77 [16],
LZ78 [17]) to eliminate redundant data, which achieves a high compression efficiency but at the expense of long processing
time. Delta compression [12,13] detects duplicates between similar chunks (i.e., the input and base chunks) and encodes the
matched/unmatched strings of the input chunk as the instructions of “Copy”/“Insert” in a delta chunk. Delta compression



260 W. Xia et al. / Performance Evaluation 79 (2014) 258-272

Table 1
A comparison among three lossless data reduction technologies.

Traditional lossless compression

Delta compression

Data deduplication

Target

Processing granularity
Representative methods
Scalability

Representative prototypes

All data
Byte/string

Huffman coding/dictionary coding

Weak
GZIP [11], Zlib [25]

Similar data

String

KMP based Copy/Insert
Weak

Xdelta, Zdelta

Duplicate data
Chunk/file

CDC & Secure fingerprint
Strong

LBFS, DDFS

Sliding window (size of 4B) =2

Data Stream (hexadecimal)

| e8 12 8 60 ab 24iba 7dic7 91idb 3ecis54 fc 3f 86 |

\

~

~ ~

Generate 7 strings for Xdelta encoding: \';
[¢8128c60]8c60ab24]ab24ba7d[ba7dc791]c791db3e] db3esafc | 54fc386 |

Then compute 7 fingerprints and index 7 times.

(a) Byte-wise sliding window based chunking.

Content-Defined p o, g _ 5o
Chunking B'/04—2.>

| e8 12 8 60 ab 24iba:7d c7 91 dbi3ei54 fc 3f 86

Data Stream

Generate 4 strings forv.']/Ddelta encodigg:’ -
[e812] 8c60ab24ba | 7dc791db3e | 54fc3186

Then compute 4 fingerprints and index 4 times.

(b) Content-defined sliding window based chunking.

Fig. 1. A comparison between the classic Xdelta's byte-wise sliding window technique and Ddelta’s deduplication-inspired content-defined sliding
window technique for string matching in delta compression.

uses a byte-wise sliding window, similar to the GZ compression, to find the matched strings between similar chunks, which
can be optimized by implementing the Rabin-Karp string matching algorithm [26,12]. Zdelta [ 13] incorporates the Huffman
coding [15] for delta compression to maximally eliminate redundancy.

Deduplication [6,19] divides the data stream into independent chunks of approximately equal length by Content-Defined
Chunking (CDC) (e.g., Rabin-based Chunking) algorithm [18] and then uses secure fingerprints (e.g., SHA-1) to uniquely
identify these chunks. If any two secure fingerprints match, deduplication will consider their corresponding chunks also
identical. Thus the deduplication approach simplifies the process of duplicate detection and scales well in mass storage
systems, especially in backup/archival systems with abundant duplicate contents [20]. But deduplication only identifies
duplicate chunks/files and thus fails to detect the non-duplicate but very similar chunks/files, which can be supplemented
by the delta compression technology.

Consequently, delta compression has been gaining increasing attention in recent years. Shilane et al. [9] implement delta
and GZ compression on top of deduplication to further eliminate redundancy to accelerate the WAN replication of backup
datasets. Difference Engine [2] employs delta compression, called sub-page level sharing in their study, and LZO compres-
sion to save memory usage in VM environments. [-CASH [3] makes full use of the delta compression technique to save space
and thus enlarges the logical space of SSD caches. Dropbox [21,22,10] implements delta compression to reduce the band-
width requirement of uploading the updated files by calculating the difference between two revisions and sending only the
delta updates.

2.2. Content-defined chunking scheme for delta calculation

As discussed in Section 2.1, while delta compression achieves a superior performance of data reduction among similar
data chunks, the challenge of the time-consuming string matching stemming from delta encoding remains [2-4]. The study
of Difference Engine shows that delta compression (i.e., page sharing) consumes a large amount of CPU time due to the
overheads of resemblance detection and delta encoding [2]. Shilane et al. [4] suggest that the average delta encoding speed of
similar chunks falls in the range of 30-90 MB/s, which may become a potential bottleneck in storage systems. This is because
delta compression finds the matched strings by using a byte-wise sliding window. If the string of the sliding window does
not find a match, the sliding window will move forward by only one or several bytes at a time [12], as shown in Fig. 1(a).
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Inspired by deduplication that divides the data streams into independent and non-overlapping chunks to simplify
the duplicate detection, we believe that the string matching process can also be simplified by the chunking concept of
deduplication. This means that delta compression does NOT need to employ the byte-wise sliding window to find the
matching strings. Instead, we divide the base and input chunks into smaller, independent, and non-overlapping strings by
CDC and only identifies duplicates among strings. As shown in Fig. 1(b), Ddelta is motivated by deduplication to employ
a simple content-based sliding window to find a chunking boundary to generate non-overlapping strings for duplicate
identification in delta compression. As a result, Ddelta is able to generate fewer strings than Xdelta, which accelerates the
process of string matching for delta calculation.

If the chunks/files are very similar, most of their chunked positions should be identical. This is because the same content
in the sliding window will generate the same hash values (e.g., Rabin Hash [18,6,27,28]) while the chunked positions are
decided if hash values of the sliding window are matched with a predefined value. In fact, based on our experimental
observations and recently published studies [9,2,22,29], the delta compression candidates tend to be very similar and thus
very compressible, meaning that the CDC-based approach can find enough duplicate candidates for delta compression as
demonstrated in Section 5.

However, the CDC-based approach may generate non-duplicate but very similar strings (e.g., two very similar strings
with only a few bytes being different) and lead to failure in identifying redundancy among them. We will address this
problem of compromised compression ratio due to the possible inaccurate boundary identification of CDC-based chunking
in Section 3.3, where we take inspirations from studies on content locality of redundant data [19,23,24] to search for likely
more redundancy in the duplicate-adjacent areas/regions.

3. Design and implementation

3.1. Deduplication-inspired delta compression

The design goal of Ddelta is to accelerate the duplicate detection process in the encoding phase of delta compression
for similar data files and chunks. Algorithm 1 describes the key workflow of deduplication-inspired Ddelta encoding that
is designed to speedup encoding. For data chunks that are either identified to be similar via resemblance detection [1,4,5]
or already known delta compression candidates [21,10,12], Ddelta is applied to fast delta encoding these data chunks as
follows:

1. Gear-based chunking. Ddelta divides the similar chunks into independent and non-overlapping strings based on the Gear
hashes of their content, which is implemented by the GEARCHUNKING() function detailed in Section 3.2 and in Algorithm
2.

2. Spooky-based fingerprinting and duplicate identification. Ddelta identifies the duplicate strings obtained from Gear-based
chunking above by computing and then matching their Spooky hashes. If their Spooky hashes match, their content will
be further verified for duplicates, as implemented in the FINDMATCH() function of Algorithm 1.

3. Greedily scanning duplicate-adjacent areas. To improve the duplicate detection and thus detect more duplicates, Ddelta
byte-wisely scans non-duplicate areas immediately adjacent to the above confirmed duplicate strings exploiting content
locality of redundant data as detailed in Section 3.3.

4. Encoding. Ddelta encodes the duplicate and non-duplicate strings as “Copy” and “Insert” instructions respectively, as
detailed in Section 3.4.

To simplify duplicate detection, Ddelta fast computes the fingerprints of strings and builds a small index table “Sindex”
for lookup, by using a weaker but faster hash scheme, called Spooky hash [30], in place of a time-consuming secure
fingerprinting approach (e.g., SHA-1). Here, Ddelta employs the 64-bit Spooky hash for string fingerprinting to minimize
the hash collisions.

Since the data objects being processed by Ddelta compression are just two similar chunks or files (the input and base)
and thus can all easily fit in RAM, a fast byte-wise comparison for duplicates becomes possible. If two strings’ fingerprints
match, Ddelta checks their contents by an in-RAM byte-wise comparison (i.e., memcmp() in C language) whose overhead is
negligible relative to chunking and fingerprinting. Note that other fast hash approaches like Murmur [31] and xxHash [32]
can also be employed for fast Ddelta fingerprinting.

3.2. Gear-based fast chunking

As suggested by recently published studies [27,28] and our experimental observations, the pure Rabin-based chunking is
time-consuming and thus may be a source of potential performance bottleneck for delta encoding. To address this problem,
we propose a faster hash-based chunking algorithm, called Gear-based chunking, to accelerate the CDC scheme for Ddelta
by using the re-hashed ASCII values of data content of similar chunks, as shown in Fig. 2. In Gear-based chunking, the hash
value of the sliding window is cumulatively and quickly calculated from the previous value by the GearHash in the form of
“H; = (Hj_1 < 1) 4+ GearTable[B;]".

A good hash function must have a uniform distribution of hash values regardless of the hashed content. GearHash
achieves this in two key steps: (1) GearHash employs an array of 256 random 32-bit integers to map with the ASCII values
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Algorithm 1 Deduplication Inspired Ddelta Encoding

Input: base chunk, src; input chunk, tgt
Output: delta chunk, dit;
1: function CoMPUTDELTA(sTC, tgt)

2 dit < empty

3: Slink <— GEARCHUNKING(Src)

4 Tlink <— GEARCHUNKING(tgt)

5: Sindex < INITMATCH(Slink)

6: str <— Tlink; len < size(str)

7: while str! = NULL do

8: pos < FINDMATCH(src, Sindex, str, len)

9: if pos < 0 then > No matched string
10: dlt4+ =Instruction(Insert str, len) > Add the unmatched string into the delta chunk
11: else > Find a matched string
12: dlt+ =Instruction(Copy pos, len) > Add the matched info into the delta chunk
13: end if
14: str < (str — next); len < size(str)

15: end while
16: return dit
17: end function

19: function INITMATCH(Slink)
20: str < Slink; pos < 0

21: Sindex < empty

22: while str! = empty do

23: f < Spooky(str, size(str))
24: Sindex[hash[f]] < pos
25: pos+ = size(str)

26: str < (str — next)

27: end while
28: return Sindex
29: end function

31: function FINDMATCH(src, Sindex, str, len)

32:  f < Spooky(str, len)

33:  if Sindex[hash[f]] = empty then

34: return —1 > No matched fingerprint
35: end if

36: pos < Sindex[hash[f]]

37: if memcmp(src + pos, str, len)= 0 then

38: return pos > Find a matched string
39: else

40: return —1 > Spooky hash collision
41 end if

42: end function

of the data bytes in the sliding window; and (2) The addition (“+”) operation adds the least-significant byte in the content-
defined sliding window into Gear hashes while the left-shift (“<<”") operation helps strip away the most-significant byte of
the content-defined sliding window. As a result, GearHash generates uniformly distributed hash values by using only three
operations (i.e., “+”, “«”, and an array lookup) while quickly moves through the data content for the purpose of chunking.

Algorithm 2 describes the workflow of Gear-based chunking for delta encoding. Gear-based chunking determines the
chunking boundary by checking whether the value of the x most-significant bits (MSB) of Gear hash is equal to a predefined
value or not. Note that this MSB-based way of finding the boundary by Gear-based chunking is different from Rabin-based
chunking in that the latter determines the chunking boundary by checking if the Rabin hash value mod M, i.e., the value of
the x least-significant bits (LSB), is equal to a predefined value, where M is the average chunk size. Note that the number x of
MSB or LSB bits is determined by the average chunks size M as x = log, (M). For example, to generate chunks of average 8 KB
size, Gear-based chunking would choose the 13 most-significant bits (i.e., log,(8192)) of the Gear hash value to determine
the chunking boundary, whereas Rabin-based chunking would choose the 13 least-significant bits.

Table 2 shows a comparison of pseudocode and computation overhead between Rabin-based chunking [27,33,6] and
Gear-based chunking. By effectively employing a random-integer table and incorporating with one addition (“+") and
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—»>GearTable[2D]=0x342ad348
—>GearTable[97]=0x7¢239ac8
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Fig. 2. Gear-based fast chunking.

Algorithm 2 Gear-based Chunking for Ddelta Encoding

Input: chunk, src;

Output: strings linklist, Slink;
1: Predefined values: mask bits for the average string size, mask; matched value, xxx
2: function GEARCHUNKING(SrC)

3 fp < 0;pos < 0;last < 0

4: SLink < empty

5 while pos < size(src) do

6: fo = (fp << 1) 4 GearTable[src[pos]]

7 if fp & mask = xxx then > Get the MSB of fp
8 str = src[last — pos]

9: InsertLinkList(str, Slink)

10: last < pos

11: end if

12: pos < pos + 1

13: end while
14: return SLink
15: end function

one left-shift (“<”’) operation, Gear-based chunking eliminates more than half of calculation overhead from Rabin-based
chunking while achieving a comparable hashing and chunking efficacy as demonstrated in Section 4.2.

3.3. Greedily scanning the duplicate-adjacent areas

While the Gear-based CDC approach enables Ddelta to effectively reduce the number of strings for duplicate
identification, the challenge of decreased compression ratio due to CDC remains for Ddelta. This is because the CDC-based
approach [6,18] cannot always accurately find the boundary between the changed and duplicate regions among similar data and,
instead, simply determines the chunk boundary if the hash (e.g., Rabin, Gear) of the CDC sliding window matches a predefined
value. Consequently, for some non-duplicate but nearly identical strings (i.e., with only one or two bytes being different),
Ddelta may generate totally different Spooky fingerprints and thus miss the opportunity to identify redundancy among
these strings.

To address this challenge, we take inspirations from the studies of Bimodal Chunking [23] and SiLo [24] on the content
locality of redundant data, which suggests that the neighboring data of duplicate chunks should be considered good
deduplication candidates due to the data-stream content locality. Therefore, Ddelta also searches the areas immediately
adjacent to known duplicates to lend themselves to easy duplicate detection by the following two steps.

e Chunk-level search in the duplicate-adjacent areas. For those resemblance-detected chunks [1,2,4] (i.e., the delta
compression candidates), Ddelta will directly search and scan from both ends of similar chunks toward centers for
duplicate matching until byte-wise comparison fails to find a match. For example, given contiguous chunks {A, B, C} and
{A’, B’, C'} from two data streams where A’ & C’ are detected to be duplicate to A & C respectively and B’ is resemblance-
detected to be very similar to B, Ddelta can search the duplicate-adjacent areas, namely, the beginnings and the endings
of B’ and B, to detect more duplicate contents due to the content locality of data stream.

o String-level search in the duplicate-adjacent areas. For those duplicate-detected strings, Ddelta byte-wisely searches and
scans their immediately adjacent non-duplicate strings to identify more duplicates in a way similar to above chunk-level
search.

Section 3.5 summarizes the deduplication-inspired delta encoding with these two steps incorporated, which helps Ddelta
detect more duplicates for delta calculation as demonstrated in Section 4.3.
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Table 2

A comparison between the implementations of the Gear- and Rabin-based
CDC. Here ‘a’ and ‘b’ denote contents of the first and the last byte of the sliding
window respectively, ‘N’ is the length of the content-defined sliding window,
and ‘U’ & ‘T’ denote two predefined arrays for the computation of Rabin-based
chunking [33,6].

Name Pseudocode & overhead analysis
Rabin hash = ((hash"U(a)) < 8)|b"T[hash > N]

Total overhead: 1 OR, 2 XORs, 2 SHIFTs, 2 ARRAY LOOKUPs
Gear hash = (hash < 1) + GearTable[b]

Total overhead: 1 ADD, 1 SHIFT, 1 ARRAY LOOKUP

3.4. Encoding and decoding

Combining the techniques of deduplication-inspired delta encoding and greedily scanning for more duplicates,
Ddelta encodes the matched and unmatched regions of the input chunk as a delta chunk by the two instructions of
“Copy|offset,length]” and “Insert[data,length]” respectively. For those matched or unmatched contiguous data regions,
Ddelta will merge them into a single “Copy” or “Insert” instruction to simplify both the delta encoding and decoding oper-
ations.

To restore the input chunk, Ddelta decodes the instructions in the delta chunk sequentially. For a “Copy” instruction,
Ddelta reads the data from the base chunk according to the information of offset and length. For an “Insert” instruction,
Ddelta directly reassembles the data from the delta chunk into the restored chunk.

3.5. Putting it all together

To put things together and in perspective, Fig. 3 shows the Ddelta encoding workflow by way of an example. For each pair
of resemblance-detected similar chunks or already known delta compression candidates, Ddelta goes through the following
four key steps.

e Step 1. Chunk-level greedily scanning for duplicates as illustrated in Fig. 3(a).!

e Step 2. Duplicate-string identification by Gear-based chunking and Spooky-based fingerprinting as illustrated in Fig. 3(b).
e Step 3. String-level greedily scanning for duplicates as illustrated in Fig. 3(c).

e Step 4. Generate delta chunk based on results of duplicate identification from Steps 1-3 as illustrated in Fig. 3(d).

4. Performance evaluation

4.1. Experimental setup

Experimental platform. We implement and evaluate a Ddelta prototype on the Ubuntu 12.04.2 operating system running
on a quad-core Intel i7 processor at 2.8 GHz, with a 16GB RAM, two 1TB 7200RPM hard disks, and a 120GB SSD of Kingston
SVP200S37A120G.

Configurations for data reduction. For data deduplication, the average, maximum, and minimum chunk sizes are 8 KB,
64 KB, and 2 KB respectively, which is the same configuration as the one in LBFS [6]. For delta compression, two well-
known open-source projects, Xdelta [12] and Zdelta [13], are used in the evaluation as the baselines for the proposed
Ddelta compression. In addition, we use the GZIP compression [11] (short for GZ) to assess the post-delta-compression
data reduction performance.

Evaluation metrics. Compression ratio (CR) is measured in terms of the percentage of data reduced by any of the evaluated
data-reduction schemes, namely, deduplication, delta compression (Xdelta, Zdelta, and Ddelta), and GZ compression.
Compression factor (CF) is measured by the ratio of data sizes before and after data reduction by any of the evaluated schemes.
Thus, CR = ﬁ Encoding/decoding speeds (throughputs) are recorded by dividing the amount of encoded/decoded data
by the response time of the given evaluated delta compression approach.

Evaluation datasets. Six datasets are used in the evaluation of Ddelta, with their key characteristics summarized in Table 3
and detailed as follow.

1 Byte-wise comparison is frequently used in our algorithm, thus it plays an important role in the overall performance of Ddelta. To avoid the naive
byte-by-byte comparison that can be slow, we perform one 64-bit XOR operation for each pair of 8-byte strings at a time. If the XOR result is zero, it means
that all 8 bytes are identical, and we can move the next 8 bytes. Otherwise, we need to perform right shift operations on the XOR result and obtain the byte
offset that causes the difference.



W. Xia et al. / Performance Evaluation 79 (2014) 258-272 265

Base Chunk A

s, Input Chunk ﬁ’r\
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fails to find a match

(a) Step 1: Scanning from both ends of two known similar chunks (i.e., A & B that are
adjacent to confirmed duplicate chunks (not shown here)) toward the center in search of
duplicate content by byte-wise comparison, until match fails.

Duplicate Duplicate S
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Base Chunk A

(b) Step 2: Using Gear-based chunking to divide the remaining areas (i.e., non-duplicate
portions of A & B after Step 1) into smaller and non-overlapping strings and identifying
duplicate strings by their Spooky fingerprints & content.
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Input Chunk B
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(c) Step 3: Scanning the areas immediately adjacent to duplicate strings identified in Step 2
for additional duplicate content.

Base Chunk A
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Delta Chunk |C| | |C| | |C| | 1, 2, and 3 respectively

(d) Step 4: Encoding duplicate and non-duplicate data regions into the delta chunk, where C
and I stand for the “Copy” and “Insert” instructions respectively.

Fig. 3. The workflow of the Ddelta approach.

e GCCand Linux are two well-known open-source projects that are available from the websites [34,35]. These two datasets
represent workloads of typical large software source code.

e VM-A is a VM archive that consists of 78 virtual machine images of different OS release versions from the website [36],
including 23 Centos images, 18 Fedora images, 17 Ubuntu images, 12 FreeBSD images, and 6 Debian images. This datasets
represent the workload with low deduplication factor.

e VM-B is a VM backup dataset containing 177 full backups of an Ubuntu 12.04 virtual machine in use, which is a common
use-case for data reduction in the real world.

o RDB is a dataset collected from the Redis key-value store database [37]. We backup the dump.rdb files as the snapshots
of the Redis database, and collect 200 backups, which represents a typical database workload for data reduction.

e Bench is a benchmark dataset generated from the snapshots of a personal cloud storage benchmark [21]. We simulate
common operations of file systems, such as file create/delete/modify on the snapshots of this benchmark according to
existing approaches [38,39].

4.2. An empirical study of Gear hash

In this subsection, we evaluate the efficiency and efficacy of Gear hash for CDC with an average chunk size of 8 KB. Fig. 4
shows the distribution of hash values of the Rabin and Gear algorithms under three typical workloads, Linux, VM-A, and
RDB, by chunking one image each of these datasets using these algorithms. To estimate the hash distribution, throughout
the entire chunking process we count the total number of occurrences of hashing that result in a given masked hash value.
Thus, each dot in Fig. 4 indicates the total number of occurrences of hashing (Y axis) that result in the same masked hash
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Table 3
Workload characteristics of the six datasets used in the performance
evaluation. Here deduplication factor is measured by Rabin-based chunking.

Dataset # of Total Deduplication factor
name Images/versions size
GCC 43 14.1GB 6.71
Linux 258 104 GB 44.7
VM-A 78 114 GB 1.65
VM-B 117 1.78 TB 25.8
RDB 211 1.15TB 7.22
Bench 200 1.54TB 35.0
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Fig. 4. A comparison of hash distribution between the Rabin-based and Gear-based chunking schemes. Here the X axis shows the masked hash values,
that is, the 13 most/least significant bits of the Gear/Rabin hash values for CDC with an average chunk size of 8 KB in a deduplication system. The Y axis
indicates the total number of occurrences of hashing that result in the same masked hash value.
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Fig. 5. Comparisons of chunk-size distribution and chunking speed between Rabin-based and Gear-based chunking approaches. Note that chunk-size
distributions of other datasets are similar to and consistent with results of RDB in (a), and thus are omitted here.

value on the X axis. With this plotting, the closer the dots clutter around a horizontal band (i.e., hash values being more
uniformly distributed), the more desirable the hash algorithm is. The results in Fig. 4 suggest that the Gear hash algorithm
achieves a similar uniform distribution as the Rabin hash algorithm under the three workloads, indicating that the former
achieves its low compute overhead without sacrificing the hash quality for CDC, as discussed in Section 3.2.

Fig. 5(a) shows the distribution of chunk-size generated by the Gear-based and Rabin-based chunking approaches on the
Linux dataset. In fact, the chunk-size distributions of the Gear-based and Rabin-based approaches are nearly identical and

follow the exponential distribution (i.e., F(x) = (1 — e‘%), where x is the chunk size) as denoted by the “math” curve
in Fig. 5(a). On the other hand, Figs. 5(b) and (c) suggest that the Gear-based chunking achieves average speedups of about
2.04x and 2.28 x over the Rabin-based chunking on the Intel i7 and Xeon E5605 processors, respectively. The results in
Fig. 5 are consistent with the overhead analyzed in Table 2 of Section 3.2, which demonstrates that Gear hash can be used
as a replacement of the Rabin hash algorithm for faster CDC.

Table 4 compares the compression performance between Rabin-based CDC and Gear-based CDC with an expected
average chunk size of 8KB for data deduplication. The comparisons of CR and CF on the six datasets clearly show that
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Table 4
Comparisons of compression ratio, compression factor, and the real average chunk size between Rabin-based chunking and Gear-based chunking for data
deduplication with the expected average chunk size of 8 KB.

Dataset Compression ratio (CR) Compression factor (CF) Average chunk size
Rabin Gear Difference Rabin Gear Difference Rabin (KB) Gear (KB) Difference (KB)

GCC 85.09% 85.09% 0.003% 6.71 6.71 0.001 4.19 4.20 0.011
Linux 97.76% 97.76% 0.001% 44.69 4471 0.015 5.80 5.83 0.033
VM-A 39.50% 39.83% 0.329% 1.65 1.66 0.009 12.4 11.3 1.144
VM-B 96.13% 96.15% 0.035% 25.84 25.99 0.156 10.9 10.5 0.395
RDB 86.15% 86.18% 0.023% 7.22 7.24 0.018 9.55 9.54 0.008
Bench 97.14% 97.15% 0.009% 35.03 35.13 0.106 9.95 9.93 0.019
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Fig. 6. The workflow of a post-deduplication data reduction (delta +GZ compression) system.

the difference in duplicate identification on the sets of data chunks generated by Rabin-based chunking and Gear-based
chunking is practically negligible. The difference in the real average chunk size between these two approaches is very
insignificant, which is consistent with the observations made from Figs. 4 and 5(a). Note that the real average chunk size
generated by the Rabin and Gear approaches are very different from the expected value of 8 KB. The reasons are twofold.
First, we configure the minimum chunk size to be 2 KB, which is the same as LBFS [6]. Second, the actual chunk size is
determined when the CDC process reaches the end of the file.

Based on the results in Figs. 4 and 5, and Table 4, we believe that Gear-based chunking is comparable to Rabin-based
chunking in terms of the uniformity of chunk-size distribution and the data reduction efficiency, while achieving a hashing
speed twice as fast.

4.3. Case study I: delta compression of resemblance-detected similar chunks

In this subsection, we evaluate the compression efficiency and delta encoding/decoding speed of Ddelta by means of a
post-deduplication data reduction system that implements delta and GZ compression on the non-duplicate chunks (i.e., data
deduplication is already done) as shown in Fig. 6.

Generally speaking, implementing delta compression on top of data deduplication entails three key functional
components as indicated in Fig. 6, (1) resemblance detection, (2) reading the base chunk, and (3) delta encoding the input
chunk with the base chunk. Here we employ a widely used super-feature based approach [1,4,9,5] to detecting resembling
chunks among the non-duplicate data chunks resulting from data deduplication for delta compression. The super-feature
approach generates features of chunks by their Rabin fingerprints and group these features into super-features, which has
been used widely to successfully identify similar web pages, files, and chunks [1]. If an input chunk was resemblance-
detected by matching a super-feature, the system will read the base chunk that has the matched super-feature for delta
encoding by Xdelta, Zdelta, and Ddelta respectively. GZ compression will be applied to further reduce redundancy when
delta compression has finished encoding all similar chunks.

In this case study, we use a configuration of 3 super-features and 2 features per super-feature for resemblance detection
in our evaluation of delta compression. As the resemblance detection may detect multiple resembling chunks for the input
chunks, we adopt the “First-Fit” approach proposed in REBL[1]. GZ compression is applied in a 128 KB write buffer to achieve
a good trade-off between compression ratio and speed [20]. Since reading base chunks for delta encoding inevitably causes
random IOs for the on-disk data [4], we store the dissimilar chunks and delta chunks on SSD to examine the maximum
performance of delta encoding/decoding of the Ddelta, Xdelta, and Zdelta approaches.

Table 5 shows the CF achieved by data deduplication, delta compression, and GZ compression respectively. Delta
compression achieves a CF of more than 3 on the Linux and RDB datasets and CF of 1.5x-2.5x on the other four datasets.
GZ compression achieves a CF of more than 2 x on the first four datasets but does relatively poorly on the last two datasets
that contain a large amount of random-byte content.

Based on the post-deduplication data reduction system described in Fig. 6 and results shown in Table 5, we conduct a sen-
sitivity study of Ddelta compression efficiency according to its two key ideas of reducing compute overhead by Gear-based
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Fig. 8. Comparisons in delta encoding/decoding speed among deduplication, Ddelta, Xdelta, and Zdelta. (a) Combines one of the two chunking schemes,
Rabin and Gear, with one of the two fingerprinting schemes, SHA1 and Spooky, to compare Ddelta (Gear+Spooky) with deduplication (Rabin+SHA1). (b)
and (c) Compare Ddelta with Xdelta and Zdelta in encoding/decoding speed, where Ddelta is configured with an average string size of 32B.

Table 5
Compression factors of deduplication and post-deduplication data reduction. Here we use the Xdelta as the
representative approach for delta compression. Note that CFrorqt = CFpegupe X CFpeita X CFg;z.

Dataset Compression factor (CF) Final size
Dedupe Delta GZ Total
GCC 6.71 2.58 2.90 50.2 287 MB
Linux 447 3.14 3.09 4345 245 MB
VM-A 1.65 1.60 2.51 6.63 17.2GB
VM-B 25.8 1.55 2.35 93.7 19.0 GB
RDB 7.22 5.29 1.47 56.3 20.4 GB
Bench 355 223 1.00 78.4 19.6 GB

chunking and Spooky-based fingerprinting, and of improving compression ratio by greedily scanning the duplicate-adjacent
areas.

Fig. 7 shows the Ddelta compression performance with a breakdown of contributions by its three key duplicate-
identification steps (i.e., Steps 1-3 of Fig. 3) and as a function of the average string size for Gear-based chunking on the
six datasets. Fig. 7(a) shows that Step 1 of Ddelta detects about one third of redundancy by greedily scanning from two ends
of similar chunks toward their centers without chunking and fingerprinting. Fig. 7(b) suggests that redundancy eliminated
by Ddelta decreases as the average string size on the Linux dataset increases while Step 3 helps detect more duplicates by
scanning the areas adjacent to duplicate strings detected in Step 2. Fig. 7(c) indicates that the Ddelta encoding speed in-
creases with the average string size. This is because when using a smaller average string size, Ddelta generates more strings
and thus computes more fingerprints for duplicate identification. Note that Ddelta achieves the highest delta encoding speed
on the Bench dataset in Fig. 7(c) because its Step 1 contributes to more than 80% of duplicate detection as shown in Fig. 7(a).

Fig. 8(a) shows a comparison in encoding speed between the deduplication (Rabin +SHA1) and Ddelta (Gear +Spooky)
solutions as a function of the chunked string size. Ddelta accelerates the deduplication-based delta encoding by a factor
of about 1.7 x via Spooky-based fingerprinting and by a factor of about 1.4x via Gear-based chunking. This indicates that
the Gear-based and Spooky-based approaches contribute significantly to Ddelta’s ability to reduce the compute overhead
for delta encoding. Fig. 8(b) and (c) compare the delta compression performance of Xdelta, Zdelta, and Ddelta (with an
average string size of 32B) on the six datasets. Ddelta is shown in Fig. 8(b) to achieve an average delta encoding speedup
of 2.5x and 8 x over Xdelta and Zdelta respectively, by chunking the similar data into independent and non-overlapping
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strings to simplify the duplicate detection. Meanwhile, Ddelta also achieves a decoding speedup of 4.5 x-20x over Xdelta
and Zdelta by using Gear-based chunking to generate non-overlapping strings for duplicate identification. Note that Zdelta
has the lowest encoding and decoding speeds because of its addition of the Huffman coding for delta compression, which
improves redundancy elimination slightly but at the expense of longer processing time.

Fig. 9 shows the CR of different combinations of various data reduction approaches. Ddelta (with an average string size
of 32B) achieves nearly 90% of compression ratio of Xdelta and Zdelta when the post-deduplication data reduction system
only applies delta compression on top of deduplication. But when the system combines Delta and GZ compression together
for data reduction, the Ddelta+GZ approach achieves nearly the same CR as the Xdelta4+-GZ and Zdelta+GZ solutions. GZ
compression achieves better data reduction performance than delta-compression-only approaches on the first four datasets
but their combined GZ+Delta solution obtains a superior performance of CR to the GZ-only approach. Meanwhile, GZ
compression performs relatively poorly on reducing the last two datasets that contain significant random-byte content (CR
of GZ-only approach on the Bench dataset is nearly equal to zero), which were already well compressed by delta compression
solutions.

Fig. 10 further examines the system compressing throughput under different data reduction solutions. Generally
speaking, Ddelta achieves the highest throughput of compressing the deduplicated data with or without combining GZ
compression. Note that the compressing throughput of Ddelta is much lower than its delta encoding speed due to the
overhead of computing super-features for resemblance detection and reading base chunks for delta encoding, as indicated
in Fig. 6.

Fig. 11 shows the uncompressing throughput of seven data reduction schemes. Ddelta also outperforms Xdelta and Zdelta
in uncompressing speed with or without combining GZ compression. The much lower uncompressing speed of the delta
compression approaches than their corresponding decoding speed of Fig. 8(c) is due to the time-consuming stage of reading
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Table 6
The workloads of case study II.
Base file Size (MB) Updated file Size (MB)
emacs-22.1.tar 133 emacs-22.2.tar 134
gdb-6.5a.tar 106 gdb-6.6a.tar 106
glibc-2.10.1.tar 99 glibc-2.11.1.tar 101
gce-4.3.4.tar 387 gce-4.3.5.tar 387
linux-3.0.10.tar 431 linux-3.0.11.tar 431
scilab-5.0.1.tar 333 scilab-5.0.2.tar 334
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Fig. 12. Delta compression performance of updated tarred files by Xdelta, Deduplication, and Ddelta.

base chunks for delta decoding. Although we have stored the delta compressed data on SSD, the speed of reading the base
chunks [4] is still much lower than the delta decoding speed of Fig. 8(c). This is why Ddelta achieves an uncompressing
throughput of about 2 GB/s on the Linux and GCC datasets whose delta-compressed-size is about 700MB that is small
enough to be cached in RAM by the filesystem. GZ compression does not need to read base chunks and thus provides a
stable performance of uncompressing speed of about 200 MB/s, except for the Bench dataset for which GZ compression fails
to reduce data.

Based on the results from Figs. 8-11, Ddelta achieves a superior performance of delta encoding and decoding but at a
cost of slightly lower compression ratio, which can be supplemented by GZ compression as shown in Fig. 9. The combined
Delta and GZ compression achieves a superior performance of data reduction but at the cost of longer processing time. It is
in this combination that Ddelta can be an excellent substitute to the Xdelta and Zdelta approaches.

4.4. Case study II: delta compression for updated tarred files

This subsection evaluates the delta compression performance of the updated similar tarred files, namely, the updated files
of the six well-known open source projects (available from the websites [34,35,40]), shown in Table 6. We compare Ddelta
with Xdelta and Deduplication (i.e., the classic Rabin+SHA1 approach [ 19]) in Fig. 10. Since we observe that the compression
ratio degrades slightly when we apply a larger average string size for Ddelta encoding, both Ddelta and Deduplication use
an average string size of 128B for Content-Defined Chunking based delta calculation.

Fig. 12(a) suggests that Ddelta achieves a comparable level of data reduction on the six updated files to Xdelta but
detects more redundancy than Deduplication due to the contribution of Ddelta’s Step 3 (see Fig. 3) that greedily scans
the duplicate-adjacent areas. By using the time-efficient Gear-based chunking and Spooky-based fingerprinting, Ddelta
significantly outperforms the classic Deduplication approach, by a factor of 3, on the delta encoding speed as shown in
Fig. 12(b). Fig. 12(c) shows that Ddelta also achieves a superior performance on delta decoding speed to Xdelta, by a factor
of 2x-3x, due to Ddelta’s CDC based, more efficient encoding/decoding scheme. In this case, resemblance detection is
unnecessary and all the base and updated files can be fit in memory, thus Ddelta can provide a much stabler performance
of delta compression.

5. Conclusion and future work

In this paper, we present Ddelta, a deduplication-inspired fast delta compression scheme that effectively leverages
the principles of deduplication to improve delta encoding and decoding speeds without sacrifice to compression ratio.
Our experimental results suggest that Ddelta achieves an encoding speedup of 2.5x-8x and a decoding speedup of
2x-20x over the classic Xdelta and Zdelta approaches, while achieving a comparable level of data reduction. The empirical
study of Gear-based chunking shows it improves the Rabin-based Content-Defined Chunking process by a factor of about
2.1x while achieving nearly the same hashing and chunking efficacy for data reduction.

We plan to further improve Ddelta, an on-going project, in its compression ratio and optimize the performance of other
stages of delta compression, such as resemblance detection and reading the base-chunks. In addition, we will study and
improve data restore performance of the data reduction system that combines deduplication, delta compression, and GZIP
compression as a future work.
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