1692

IEEE TRANSACTIONS ON COMPUTERS, VOL.65, NO.6, JUNE 2016

DARE: A Deduplication-Aware Resemblance
Detection and Elimination Scheme for Data
Reduction with Low Overheads

Wen Xia, Member, IEEE, Hong Jiang, Fellow, IEEE, Dan Feng, Member, IEEE, and
Lei Tian, Senior Member, IEEE

Abstract—Data reduction has become increasingly important in storage systems due to the explosive growth of digital data in the
world that has ushered in the big data era. One of the main challenges facing large-scale data reduction is how to maximally detect and
eliminate redundancy at very low overheads. In this paper, we present DARE, a low-overhead deduplication-aware resemblance
detection and elimination scheme that effectively exploits existing duplicate-adjacency information for highly efficient resemblance
detection in data deduplication based backup/archiving storage systems. The main idea behind DARE is to employ a scheme, call
Duplicate-Adjacency based Resemblance Detection (DupAdj), by considering any two data chunks to be similar (i.e., candidates for
delta compression) if their respective adjacent data chunks are duplicate in a deduplication system, and then further enhance the
resemblance detection efficiency by an improved super-feature approach. Our experimental results based on real-world and synthetic
backup datasets show that DARE only consumes about 1/4 and 1/2 respectively of the computation and indexing overheads required
by the traditional super-feature approaches while detecting 2-10 percent more redundancy and achieving a higher throughput, by
exploiting existing duplicate-adjacency information for resemblance detection and finding the “sweet spot” for the super-feature

approach.

Index Terms—Data deduplication, delta compression, storage system, index structure, performance evaluation

1 INTRODUCTION

HE amount of digital data is growing explosively, as evi-

denced in part by an estimated amount of about 1.2 zet-
tabytes and 1.8 zettabytes respectively of data produced in
2010 and 2011 [1], [2]. As a result of this “data deluge”, man-
aging storage and reducing its costs have become one of the
most challenging and important tasks in mass storage sys-
tems. According to a recent IDC study [3], almost 80 percent
of corporations surveyed indicated that they were exploring
data deduplication technologies in their storage systems to
increase storage efficiency.

Data deduplication is an efficient data reduction
approach that not only reduces storage space [4], [5], [6], [7],
[8], [9], [10] by eliminating duplicate data but also mini-
mizes the transmission of redundant data in low-bandwidth
network environments [11], [12], [13], [14]. In general, a

o W. Xia is with the School of Computer Science and Technology, Wuhan
National Laboratory for Optoelectronics, Huazhong University of Science
and Technology, Wuhan 430074, HuBei, China. E-mail: xia@hust.edu.cn.

e H. Jiang is with the Department of Computer Science and Engineering,
University of Nebraska-Lincoln, 217 Schorr Center, 1101 T Street, Lin-
coln, NE 68588-0150. E-mail: jiang@cse.unl.edu.

e D. Feng is with the Wuhan National Laboratory for Optoelectronics,
School of Computer Science and Technology, Huazhong University of
Science and Technology, Wuhan 430074, HuBei, China.

E-mail: dfeng@hust.edu.cn.

o L. Tian is with Tintri, Mountain View, CA 94043.

E-mail: leitian. hust@gmail.com.

Manuscript received 25 July 2014; revised 29 June 2015; accepted 1 July 2015.
Date of publication 12 July 2015; date of current version 16 May 2016.
Recommended for acceptance by A. Mendelson.

For information on obtaining reprints of this article, please send e-mail to:
reprints@ieee.org, and reference the Digital Object Identifier below.

Digital Object Identifier no. 10.1109/TC.2015.2456015

chunk-level data deduplication scheme splits data blocks of
a data stream (e.g., backup files, databases, and virtual
machine images) into multiple data chunks that are each
uniquely identified and duplicate-detected by a secure
SHA-1 or MD5 hash signature (also called a fingerprint) [5],
[11]. Storage systems then remove duplicates of data chunks
and store only one copy of them to achieve the goal of space
savings.

While data deduplication has been widely deployed in
storage systems for space savings, the fingerprint-based dedu-
plication approaches have an inherent drawback: they often
fail to detect the similar chunks that are largely identical
except for a few modified bytes, because their secure hash
digest will be totally different even only one byte of a data
chunk was changed [4], [5], [12], [15], [16]. It becomes a big
challenge when applying data deduplication to storage data-
sets and workloads that have frequently modified data, which
demands an effective and efficient way to eliminate redun-
dancy among frequently modified and thus similar data.

Delta compression, an efficient approach to removing
redundancy among similar data chunks has gained increas-
ing attention in storage systems [12], [17], [18], [19], [20]. For
example, if chunk A, is similar to chunk A; (the base-
chunk), the delta compression approach calculates and then
only stores the differences (delta) and mapping relation
between A, and A;. Thus, it is considered a promising tech-
nique that effectively complements the fingerprint-based
deduplication approaches by detecting similar data missed
by the latter.

One of the main challenges facing the application of delta
compression in deduplication systems is how to accurately

0018-9340 © 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

XIA ETAL.: DARE: A DEDUPLICATION-AWARE RESEMBLANCE DETECTION AND ELIMINATION SCHEME FOR DATA REDUCTION WITH...

detect the most similar candidates for delta compression with low
overheads. The state-of-the-art solutions [12], [15], [16], [17]
detect similarity for delta compression by computing sev-
eral Rabin fingerprints as features and grouping them into
super-fingerprints, also referred to as super-features (SF)
(detailed in Section 3.3). Nevertheless, to index a dataset of
80 TB and assuming an average chunk size of 8 KB and 16
bytes per index entry, for example, about 200 GB worth of
super-feature index entries must be generated, which will
still be too large to fit in memory [12]. Since the random
accesses to on-disk index are much slower than that to
RAM, the frequent accesses to on-disk super-features will
cause the system throughput to become unacceptably low
for the users [6], [12], [21].

The existing solutions to the indexing issue of delta com-
pression either record the resemblance information for files,
instead of data chunks, so that similarity index entries can
fit in the memory [22], [23], or exploit the locality of backup
data streams in deduplication-based backup/archiving sys-
tems, which avoids the global indexing on the disk [12],
[17]. The first approach faces an implementation difficulty
in large-scale data deduplication systems since it is hard to
record all the resemblance or version information of files in
such systems [12]. The second approach often fails to detect
a significant amount of redundant data when the workloads
lack locality. Another challenge facing the super-feature
method is the high overhead in computing the super-fea-
tures. According to a recent study of delta compression [17]
and our experimental observation, the throughput of com-
puting super-features is about 30 MB/s (see Section 3.3 for
details), which may become a potential bottleneck for dedu-
plication-based storage systems, particularly if most index
entries are fit in memory or partially on SSD-based storage
for which the throughput can be hundreds of MB per sec-
ond or higher.

From our observation of duplicate and similar data of
backup streams, we find that the non-duplicate chunks
that are adjacent to duplicate ones could be considered
good delta compression candidates in data deduplication
systems. Thus we propose the approach of Duplicate-
Adjacency based Resemblance Detection, or DupAdj for short.
Exploiting this existing deduplication information (i.e.,
duplicate-adjacency) not only avoids the high overhead
of super-feature computation but also reduces the size of
index entries for resemblance detection. On the other
hand, our study of the existing super-feature approaches
reveals that the traditional super-feature method can be
improved with fewer features per super-feature, which works
very effectively on deduplication systems when combined
with the aforementioned DupAdj approach.

In this paper, we propose DARE, a low-overhead Dedu-
plication-Aware Resemblance detection and Elimination
scheme for deduplication based backup and archiving stor-
age system. The main idea of DARE is to effectively exploit
existing duplicate-adjacency information to detect similar
data chunks (DupAdj), refine and supplement the detection
by using an improved super-feature approach (Low-Ouver-
head Super-Feature) when the existing duplicate-adjacency
information is lacking or limited. In addition, we present an
analytical study of the existing super-feature approach with
a mathematic model and conduct an empirical evaluation of

1693

this approach with several real-world workloads in data
deduplication systems.

Our experimental evaluation results, based on real-world
and synthetic backup datasets, show that DARE signifi-
cantly outperforms the traditional Super-Feature approach.
More specifically, the DupAdj approach achieves a similar
data reduction efficiency to the pure super-feature approach
and DARE detects 2-10 percent more redundant data while
achieving a higher throughput of data reduction than the
pure super-feature approach. Meanwhile, DARE only con-
sumes about 1/4 and 1/2 respectively of the computation
and indexing overheads required by the traditional super-
feature approach for resemblance detection. It is important
to note that our evaluation also demonstrates the superior
data-restore performance of the DARE-enhanced dedupli-
cation system over the deduplication-only systems via delta
compression, where the former outperforms the latter by a
factor of 2 (2x).

The rest of the paper is organized as follows. Section 2
presents background and motivation for this work. Section
3 describes the architecture, key data structures, and resem-
blance detection schemes of DARE. Section 4 presents our
experimental evaluation of the DARE prototype and dis-
cusses the results. Section 5 draws conclusions and provides
directions for future work.

2 BACKGROUND AND MOTIVATION

In this section, we first present the necessary background
knowledge about resemblance detection for data reductions
in storage systems, then provide analytical and experimen-
tal observations that motivate our research on resemblance
detection for data reduction.

2.1 Resemblance Detection Based Data Reduction
Data deduplication is becoming increasingly popular in
data-intensive storage systems as one of the most efficient
data reduction approaches in recent years. Fingerprint-
based deduplication techniques eliminate duplicate
chunks by checking their secure-fingerprints (i.e., SHA-1/
SHA-256 signatures), which has been widely used in com-
mercial backup and archiving storage systems [6], [24],
[25], [26], [27].

Previous studies on data deduplication have shown
that one challenge lies in the system scalability issue of
index-lookup. That is, the fingerprints of a multi-TB-scale
storage system will be too large to fit in memory and
must be moved to the disk, which causes long latencies of
random disk I/Os for fingerprint index-lookup. Most
existing solutions to this problem aim to make full use of
RAM, by putting only the hot fingerprints into RAM to
reduce accesses to on-disk index. DDFS [6] and Sparse
Indexing [25] attempt to avoid the disk bottleneck for
deduplication indexing by exploiting the inherent locality
of the backup streams and preserving this locality in the
memory to increase cache hit ratio. Locality here means
that the chunks of a backup stream will appear in approx-
imately the same order in each full backup with a high
probability. Extreme Binning [28] and SiLo [29] exploits
similarity-only and similarity & locality of the backup
data streams respectively to minimize RAM overhead for

1694

TABLE 1
Comparisons between Duplicate Detection and Resemblance
Detection for Data Reduction Systems

Duplicate Detection =~ Resemblance Detection

Similar data
Byte-level
Super-Feature based
Delta Compression

Objects
Granularity
Rep. Methods

Duplicate data
Chunk-level
Secure-Fingerprint
based Deduplication

Scalability Stron Weak
Rep. Systems LBFS [11], Venti[5], REBL[16], DERD[15],
DDFS [6] SIDC[12]

deduplication index-lookup. ChunkStash puts the finger-
print index on SSD by means of a memory-efficient data
structure called cuckoo hash to accelerate index-lookup
for data deduplication [21].

Another challenge for data deduplication is how to maxi-
mally detect and eliminate data redundancy in storage sys-
tems by determining appropriate data chunking schemes.
In order to find more redundant data, the content-defined
chunking (CDC) approach was proposed in LBFS to find
the proper cut-point of each chunk in the files and address
the boundary-shift problem [9], [11], [30]. Re-chunking
approaches were also proposed to divide those non-dupli-
cate chunks into smaller ones to expose and detect more
redundancy [31], [32], [33].

Resemblance detection with delta compression[15], [16],
[26], as another approach to data reduction in storage sys-
tems, was proposed more than 10 years ago but was later
overshadowed by fingerprint-based deduplication [6], [24],
[25] due to the former’s scalability issue. Table 1 compares
these two data reduction approaches. Resemblance detec-
tion detects redundancy among similar data at the byte level
while duplicate detection finds totally identical data at the
chunk level, which makes the latter much more scalable
than the former in mass storage systems.

REBL[16] and DERD [15] are typical super-feature-based
resemblance detection approaches for data reduction. They
compute the features of the data stream (e.g., Rabin Finger-
prints [34]) and group features into super-features to cap-
ture the resemblance of data and then delta compress the
data. TAPER [35] presents a Bloom-Filter solution that
measures the similar files based on the chunk fingerprints
recorded in Bloom Filters. All these approaches require
high computation and indexing overheads for resemblance
detection. As a result, the simpler and faster deduplication
method has become a more popular data reduction
approach in the last five years [6], [7], [8].

Nevertheless, resemblance detection is gaining increas-
ing tractions in storage systems because of its ability to
capture and eliminate data redundancy among similar
but non-duplicate data chunks that effectively comple-
ments fingerprint-based deduplication. Difference Engine
[20] employs Xdelta [23] to further eliminate memory
redundancy and thus enlarge the logical RAM space in
VM environments. I-CASH [18] delta compresses similar
data to enlarge the logical space of SSD caches. Shilane
et al. [12] proposed a stream-informed delta compression
(SIDC) approach to reducing similar data transmission
and thus accelerating data replication in a WAN

IEEE TRANSACTIONS ON COMPUTERS, VOL.65, NO.6, JUNE 2016

Bs‘

132\133\134

Slmllar Similar Dupllcate Dupllcale Similar

-

Data stream 2

Fig. 1. A conceptual illustration of the duplicate adjacency. The non-
duplicate chunks adjacent to duplicate ones are considered potentially
similar and thus good delta compression candidates.

environment. This approach is super-feature based and
complements the chunk-level deduplication by only
detecting resemblance among non-duplicate chunks in
the cache that preserves the backup stream locality. It
avoids the costly global indexing, at a limited loss of
resemblance detection. While the combined detection of
duplicate and resemblance promises to achieve a superior
data reduction performance, challenges of relatively high
computation and indexing overheads stemming from
resemblance detection remain [17].

Note that SIDC [12] is the most related work to DARE.
Different from SIDC that implements traditional super-
feature based delta compression in a stream-informed
(i.e., locality preserved) cache, DARE first employs a
duplicate-adjacency based resemblance detection scheme
(see Section 3.2) and then an improved super-feature
based approach (see Section 3.3) to jointly and more effec-
tively reduce the indexing and computation overheads for
delta compression.

2.2 Fact of Duplicate Adjacency

As discussed in Section 2.1, the modified chunks may be
very similar to their previous versions in a backup system
while unmodified chunks will remain duplicate and are
easily identified by the deduplication process. For those
non-duplicate chunks that are location-adjacent to known dupli-
cate data chunks in a deduplication system, it is intuitive and
quite possible that only a few bytes of them are modified from the
last backup, making them potentially excellent delta compression
candidates.

Fig. 1 illustrates a case of duplicate data chunks and their
immediate non-duplicate neighbors. As mentioned above,
our intuition is that the latter are highly likely to be similar
and thus good delta compression candidates. Specifically,
since chunks B3 & B, are duplicates of chunks E3 & FEj in
Fig. 1 respectively, their immediate neighbors, the chunk-
pairs B) & £y, By & E», and Bs & E5, are then considered
good delta compression candidates, which is consistent
with the aforementioned backup-stream locality [6], [12],
[25], [29], [36].

If we can make full use of the existing knowledge about
duplicate data chunks in a deduplication system, it is pos-
sible for us to detect similar chunks without the overheads
of computing and storing features & super-features and
then accessing their on-disk index. Fig. 2 shows important
preliminary results of this duplicate-adjacency-based

XIA ETAL.: DARE: A DEDUPLICATION-AWARE RESEMBLANCE DETECTION AND ELIMINATION SCHEME FOR DATA REDUCTION WITH...

100% R DupAdj 100% 1 S DupAdj

V72 Dedupe

80% 80%-
60% 60%

40% 40%-

Data reduced / Total

20%

20%+

Avg. similarity degree

0%

0%

Emacs Glibc GCC
Datasets

(a) Similarity degree of the Du- (b) Redundancy reduced by
pAdj detected chunks DupAdj-based delta compression

Linux Glibc

Datasets

Fig. 2. A study of redundancy elimination on the four real-world tarred
datasets by 8KB-level deduplication and then DupAdj-based delta
compression.

resemblance detection approach, called DupAdj, on sev-
eral real-world datasets whose workload characteristics
are detailed in Table 2 in Section 4.1. First, the similarity
degree (i.e., W) of the DupAdj-detected
chunks tends to be L\lltgrybﬁ(igh, on average, about 84-96 per-
cent on the four backup datasets as shown in Fig. 2a. Sec-
ond, by exploiting this duplicate adjacency information,
the DupAdj-based post deduplication delta compression
approach can further detect and eliminate about 30-50 per-
cent redundancy from the non-duplicate but duplicate-
adjacent chunks as shown in Fig. 2b. Hence, this DupAdj
approach, detailed in Section 3.2, is very effective for
detecting possible similar chunks and then delta encoding
them to further remove redundancy in deduplication-
based backup systems while significantly simplifying the
resemblance detection process.

2.3 Rethinking of the Super-Feature Approaches
Similar data, like duplicate data, are in wide existence in
backup systems [8], [17]. Meister and Brinkmann [37] find
that small semantic changes on documents may result in
big modifications in the binary representation of files, and
delta compression is more effective in eliminating redun-
dancy in such cases. To support delta compression, resem-
blance detection will be required for selecting suitable
similar candidates.

Some early research on resemblance detection of near-
duplicate or similar files was performed by Broder for
search engine results [38], [39] and Manber for filesystems
[40]. REBL [16] and DERD [15] used an efficient super-
feature approach to eliminating redundancy with delta
compression in the early data reduction systems. How-
ever, their super-feature approaches are arguably very
different from the most recently required resemblance
detection in the current large-scale storage systems in
that:

e The datasets used in REBL and DERD are more
likely of primary storage workloads and only several
hundreds of MB in size, in contrast to typical data-
sets of deduplication sytems that are usually of the
TB/PB scale [8], [12], [41].

e The chunk size tested in their papers is in the 1-4 KB
range and hashing region of each feature is of 4-22
bytes, in contrast to typical deduplication systems
that adopt the larger chunk size of 8 KB and larger
feature hashing region of 32 or 48 bytes (i.e., CDC
sliding windows) [6], [8], [11].

1695
(1)Access on-cache index for
RAM @ dedupe and resemblance Deduplication Module I
Dedupe Hash Table . . 8
™ Dupadi Detection || £
——————————————————————————— =
- E
+ Super-Feature Detection ‘ 2
[~
,,,,,,,,,,,,,,,,,,,,, DARE
fg olk Segment
(3) Load tq dache | ‘ Chunk m Chunk m Chunk [:] [:] Chunk |!
with backup locality === !
i Chunk Metadata

N‘ ChunkID H SFeature

3
Duplicate? Similar?
A 4

" v .
3‘ ChunkID H SFeature

The chunk of previous backup stream on cache

e

Fig. 3. Architecture and key data structures of the DARE system that
combines duplicate detection and resemblance detection for data
reduction.

e The post-deduplication chunks tend to be more fre-
quently modified in backup systems, which may
make the resemblance of these non-duplicate and
less similar chunks more difficult to detect.

This motivates us to rethink the traditional super-feature-
based approaches in the context of deduplication based
backup/archiving systems for the purpose of detecting
resemblance among the post-deduplication chunks, which
is detailed in Section 3.3.

3 DESIGN AND IMPLEMENTATION

In this section, we will first describe the architecture and key
data structures of DARE, followed by detailed discussions
of its design and implementation issues.

3.1 Architecture Overview

DARE is designed to improve resemblance detection for
additional data reduction in deduplication-based backup/
archiving storage systems. As shown in Fig. 3, the DARE
architecture consists of three functional modules, namely,
the Deduplication module, the DupAdj Detection module,
and the improved super-feature module. In addition, there
are five key data structures in DARE, namely, Dedupe Hash
Table, SFeature Hash Table, Locality Cache, Container, Seg-
ment, and Chunk, which are defined below:

e A chunk is the atomic unit for data reduction. The
non-duplicate chunks, identified by their SHA-1 fin-
gerprints, will be prepared for resemblance detection
in DARE.

e A container is the fixed-size storage unit that stores
sequential and NOT reduced data, such as non-
duplicate & non-similar or delta chunks, for better
storage performance by using large I/Os [6], [36].

e A segment consists of the metadata of a number of
sequential chunks (e.g., 1 MB size), such as the
chunk fingerprints, size, etc., which serves as the
atomic unit in preserving the backup-stream logi-
cal locality [36] for data reduction. Here DARE

1696

uses a data structure of doubly-linked list to record
the chunk adjacency information for the DupAdj
detection. Note that the SFeature in the segment
may be unnecessary if the DupAdj module has
already confirmed this chunk as being similar for
delta compression.

o Dedupe hash table serves to index fingerprints for
duplicate detection for the deduplication module.

e SFeature hash table serves to index the super-features
after the DupAdj resemblance detection. It manages
the super-features of non-duplicate and non-similar
chunks.

o Locality cache contains the recently accessed data seg-
ments and thus preserves the backup-stream locality
in memory, to reduce accesses to the on-disk index
from either duplicate detection or resemblance
detection.

Here we describe a general workflow of DARE. For the
input data stream, DARE will first detect duplicate chunks
by the Deduplication module. Any of the many existing dedu-
plication approaches [36] can be implemented here and the
preservation of the backup-stream logical locality in the seg-
ments is required for further resemblance detection. For
each non-duplicate chunk, DARE will first use its DupAdj
Detection module (see Section 3.2) to quickly determine
whether it is a delta compression candidate. If it is not a can-
didate, DARE will then compute its features and super-fea-
tures, using its improved Super-Feature Detection module (see
Section 3.3), to further detect resemblance for data reduction.

Because DARE adopts a caching scheme that exploits
the backup-stream logical locality [36] in a way similar to
the Sparse Indexing [25], SiLo [29], and BLC [42]
approaches, the indexing hit ratio in the locality cache for
both the deduplication and resemblance detection mod-
ules will be very high. Upon a miss in the locality cache,
DARE will load the missing segment from the latest
backup to the RAM with the LRU replacement policy. It
is noteworthy that, after deduplication, the cached seg-
ments that have preserved the logical-locality of chunks,
including the adjacency information of the duplicate-detected
chunks, will be further exploited by DARE to detect possi-
ble resemblance among the non-duplicate data chunks, as
detailed in the next section.

3.2 DupAdij: Duplicate-Adjacency Based
Resemblance Detection
As a salient feature of DARE, the DupAdj approach detects
resemblance by exploiting existing duplicate-adjacency
information of a deduplication system. The main idea
behind this approach is to consider chunk pairs closely adja-
cent to any confirmed duplicate-chunk pair between two
data streams as resembling pairs and thus candidates for
delta compression, as conceptually illustrated in Fig. 1.
According to the description of the DARE data structures
in Fig. 3, DARE records the backup-stream logical locality of
chunk sequence by a doubly-linked list, which allows an effi-
cient search of the duplicate-adjacent chunks for resem-
blance detection by traversing to prior or next chunks on
the list, as shown in Fig. 1. When the DupAdj Detection
module of DARE processes an input segment, it will

IEEE TRANSACTIONS ON COMPUTERS, VOL.65, NO.6, JUNE 2016

traverse all the chunks by the aforementioned doubly-linked
list to find the already duplicate-detected chunks. If chunk
A,, of the input segment A was detected to be a duplicate of
chunk B, of segment B, DARE will traverse the doubly-
linked list of B, in both directions (e.g., A+1 & B,41 and
Ap—1 & B,_y) in search of potentially similar chunk pairs
between segments A and B, until a dissimilar chunk or an
already detected duplicate or similar chunk is found. Note
that the detected chunks here are considered dissimilar (i.e.,
NOT similar) to others if their similarity degree (.e.,
W) is smaller than a predefined threshold, such
as 0.25, a false positive for resemblance detection. Actually,
the similarity degree of the DupAdj-detected chunks tends
to be very high, larger than 0.88, as shown in Fig. 2 in
Section 2.2.

In general, the overheads for the DupAdj based approach
are twofold:

e Memory overhead: Each chunk will be associated with
two pointers (about 8 or 16 Bytes) for building the
doubly-linked list when DARE loads the segment
into the locality cache. But when the segment is
evicted from the cache, the doubly-linked list will be
immediately freed. Therefore, this RAM memory
overhead is arguably negligible given the total
capacity of the locality cache.

o Computation overhead: Confirming the similarity
degree of the DupAdj-detected chunks may intro-
duce additional but ommitted computation over-
head. First, the delta encoding results for the
confirmed resembling (i.e., similar) chunks will be
directly used as the final delta chunk for storage.
Second, the actual extra computation overhead
occurs when the DupAdj-detected chunks are NOT
similar, which is a very rare event as discussed in
the previous paragraph.

In all, the DupAdj detection approach only adds a dou-
bly-linked list to an existing deduplication system, DARE
avoids the computation and indexing overheads of the con-
ventional super-feature approach. In case where the dupli-
cate-adjacency information is lacking, limited, or
interrupted due to operations such as file content inser-
tions/deletions or new file appending, DARE will use an
improved super-feature approach to further detect and
eliminate resemblance as discussed in the next section.

3.3 Improved Super-Feature Approach

As mentioned in Section 2.1, traditional super-feature
approaches generate features by Rabin fingerprints and
group these features into super-features to detect resem-
blance for data reduction. For example, Feature; of a chunk
(length = N), is uniquely generated with a randomly pre-
defined value pair m; & a; and N Rabin fingerprints (as
used in content-defined chunking [11]) as follows:

Feature; = Maxjj\il{(m,,- * Rabin; + a;) mod2*?}. (1)
A super-feature of this chunk, SFeature,, can then be cal-
culated by several such features as follows:

SFeature, = Rabin(Feature,.y, . .., Feature apip—1). (2)

XIA ETAL.: DARE: A DEDUPLICATION-AWARE RESEMBLANCE DETECTION AND ELIMINATION SCHEME FOR DATA REDUCTION WITH...

For example, to generate two super-features with k=4
features each, we must first generate eight features, namely,
features 0...3 for SFeature; and features 4...7 for SFeatures.
For similar chunks that differ only in a tiny fraction of bytes,
most of their features will be identical due to the random
distribution of the chunk’s maximal-feature positions [38].
Thus two data chunks can be considered very similar if any
one of their super-features matches. The state-of-the-art
studies on delta compression and resemblance detection
[12], [16] recommend the use of 4 or more features to gener-
ate a super-feature to minimize false positives of resem-
blance detection.

However, our theoretical analysis and experimental
observations suggest that the probability of false positives
resulting from feature collision is extremely low but
increasing the number of features per super-feature actu-
ally decreases the efficiency of resemblance detection.
First, the false positives of 64-bit Rabin fingerprints tend
to be very low as discussed in [34], [43]. This means that
two chunks will have the same content of hashing region
(32 or 48 bytes) with a very high probability if they have
the same Rabin fingerprint. Next, the probability of two
similar chunks having the same feature is highly depen-
dent upon their similarity degree according to Broder’s
theorem [39]. The less similar two data chunks are to
each other, the smaller the probability there will be of
them having the same feature. Thus, the probability of
two data chunks S, and S; being detected as resembling
to each other by N features can be computed as follows:

Smszl}“'_ v
|S) U Sy '

N
Pr[O maz;(H(S1)) = maz;(H(S2))] = {
(3)

This probability is clearly decreasing as a function of the
number of features used in a super-feature, as indicated by
the above probability expression. Nevertheless, all recent
studies on delta compression suggest to increase the num-
ber of super-features [12], [17]. If any one of the super-fea-
tures of two data chunks matches, the two chunks are
considered similar to each other. Thus, the probability of
resemblance detection, expressed as 1 — (1 — yN)M, can be
increased by the number of super-features, M.

For simplicity, assume that the similarity degree y fol-
lows a uniform distribution in the range [0, 1] (note that the
actual distribution may be much more complicated in real
workloads), the expected value of resemblance detection
can be expressed as a function of the number of features per
super-feature and the number of super-features under the
aforementioned assumption as:

! N\M > i1 1
/0 2(1 = (1 — M M)dg = ;CM(D @
This expression of resemblance detection suggests that
the larger the number of features used in obtaining a super-
feature, N, is, the less capable the super-feature is of resem-
blance detection. On the other hand, the larger the number
of super-features, M, is, the more resemblance can be
detected and the more redundancy will be eliminated.

1697

100 . M=5 250, T M=
= I M=4 o M=
8 g . V=3 200{ TATM=3
§ EEv-2 o \ I
§ 60 BN G 1500 v
° M) \
a = A\ ..
g 40 < 1004 .\, ..
s 2 \ \ e
£ 20 & 504 .\E\ v e,
g N*'if:':?
z =i=t={=I—

234567 8 9
of features per super-feature (N)

1 2 3 4 5 6 7 8 9 0 1
of features per super-feature (N)

(a) Resemblance Dectection (b) Computation Speed

Fig. 4. The predicted data reduction efficiency and computation through-
put of the super-feature approach as a function of the number of features
per super-feature (N, x-axis) and the number of super-features (M,
segments on each bar in (a) or lines in (b)).

Fig. 4a shows the trend of resemblance detection as a func-
tion of N and M. The need to increase the number of super-
features suggested in Fig. 4a is consistent with the conclu-
sion of the latest study of SIDC [12], while the suggested
preference for a smaller number of features per super-fea-
ture is consistent with and verified by our experimental
evaluation detailed in Section 4.2 of this paper. Please note
that the computation overhead of the super-feature-based
resemblance approach is proportional to the total number
of features N*M, as illustrated in Fig. 4b.

In general, using fewer features per super-feature not
only reduces the computation overhead but also detects
more resemblance. Thus, DARE employs an improved
super-feature approach with fewer features per super-fea-
ture and keeps the number of super-features stable to effec-
tively complement the DupAdj resemblance detection. And
our experimental results suggest that a configuration of
three super-features and two features per super-feature
appears to hit the “sweet spot” of resemblance detection in
deduplication systems in terms of cost effectiveness.

3.4 Delta Compression
To reduce data redundancy among similar chunks, Xdelta
[23], an optimized delta compression algorithm, is adopted
in DARE after a delta compression candidate is detected by
DARE'’s resemblance detection. DARE also only carries out
the one-level delta compression for similar data as
employed in DERD [15] and SIDC [12]. This is because we
aim to minimize the data fragmentation problem that would
cause a single read request to issue multiple read operations
to multiple data chunks, a likely scenario if multi-level delta
compression is employed. In other words, in DARE, delta
compression will not be applied to a chunk that has already
been delta compressed to avoid recursive backward
referencing. And DARE records the similarity degree as the
ratio of % after delta compression (note that
“compressed size” here refers to the size of redundant data
reduced by delta compression). For example, if delta com-
pression removes 4/5 of data volume in the input chunks
detected by DARE, then the similarity degree of the input
chunks is 80 percent, meaning that the volume of the input
chunks can be reduced to 1/5 of its original volume by the
resemblance detection and delta compression techniques.
Since delta compression needs to frequently read the
base-chunks to delta compress the candidate chunks identi-
fied by resemblance detection, these frequent disk reads

1698

A. Duplicate Detection

Non-duplicates

IEEE TRANSACTIONS ON COMPUTERS, VOL.65, NO.6, JUNE 2016

Input backup stream: modified from the previous backup stream
[insert | |>

(A) Detection of duplicate chunks by their fingerprints

[[modify| [insert |

Duplicates

B. DupAdj Detection

' S

. (B) The DupAdj resemblance detection of similar chunks

Similar

C. Improved Super-Feature Approach

' S

=T

[Jos

|V

[p | | I

s o

(C) Additional detection of the Improved Super-Feature module
I

Resemblance Reduced

and Delta Stored Data Stored

Duplicate Reduced

Similar Non-gimilar [i
\ 4

I~n[os [~ |]
e ——

|V

(D) Store non-reduced data

Fig. 5. The data reduction workflow of DARE, showing an example of resemblance detection for delta compression first by the DupAdj approach and
then by the super-feature approach. ‘D’, ‘S’ and ‘N’ here refer to a duplicate chunk, a similar chunk, and a chunk that is neither duplicate nor similar,

respectively.

will inevitably slow down the process of data reduction. In
order to minimize disk reads, an LRU-based and backup-
stream locality-preserved cache of base-chunks is imple-
mented in DARE to load the entire container containing the
missing base-chunk to the memory. While our exploitation
of the backup-stream locality to prefetch base-chunks can
reduce disk reads, some random accesses to on-disk base-
chunks are still unavoidable as discussed in [17] and in our
evaluation (see Sections 4.4 and 4.5).

3.5 Putting It All Together

To put things in perspective, Fig. 5 shows a detailed case of
the processes of DARE system. For an incoming backup
stream, DARE goes through the following four key steps:

1) Duplicate detection. The data stream is first chunked,
fingerprinted, duplicate-detected, and then grouped
into segments of sequential chunks to preserve the
backup-stream logical locality [36]. Note that the
locality information will be exploited by the follow-
ing DupAdj resemblance detection.

2) Resemblance detection. The DupAdj resemblance
detection module in DARE first detects duplicate-
adjacent chunks in the segments formed in step (1).
After that, DARE’s improved super-feature module
further detects similar chunks in the remaining
non-duplicate and non-similar chunks that may
have been missed by the DupAdj detection module
when the duplicate-adjacency information is lack-
ing or weak.

3) Delta compression. For each of the resembling chunks
detected in step (2), DARE reads its base-chunk, then
delta encodes their differences. In order to reduce
disk reads, an LRU and locality-preserved cache is
implemented here to prefetch the base-chunks in the
form of data segments.

4) Storage management. The data NOT reduced, i.e., non-
similar and delta chunks, will be stored as containers
on the disk. The file mapping relationships among
the duplicate chunks, resembling chunks, and non-
similar chunks will also be recorded as the file rec-
ipes [28], [44] to facilitate future data restore opera-
tions in DARE.

For the restore operation, DARE will first read the ref-
erenced file recipes and then read the duplicate and non-
similar chunks one by one from the referenced segments
on disk according to mapping relationships in the file rec-
ipes. For the resembling chunks, DARE needs to read
both delta data and base-chunks and then delta decode
them to the original ones.

By exploiting the duplicate-adjacency information in
resemblance detection and further improving the super-fea-
ture approach, DARE is able to maximize data reduction
while reducing the overheads of resemblance detection in
existing deduplication systems, as quantitatively demon-
strated in Section 4.

4 PERFORMANCE EVALUATION

In order to evaluate DARE, we have implemented a proto-
type of DARE that allows us to examine several important
design parameters to provide useful insights. We compare
DARE with the latest super-feature approaches in terms of
data reduction, computation & indexing overheads, data-
reduction throughput, and restore speed.

4.1 Experimental Setup

Platform of the DARE prototype. We have implemented a pro-
totype of DARE and tested it on the Ubuntu 12.04 operating
system running on a quad-core Xeon E5606 processor at
2.13 GHz, with a 16 GB RAM, a 14 TB RAIDG6 disk array that
consists of sixteen 1 TB disks, and a 120 GB SSD of KING-
STON SVP200S37A120G.

Configurations for data reduction. DARE employs the
widely used Rabin algorithm [34], [43] and SHA-1 hash
function [6] respectively for chunking and fingerprinting
for data deduplication, and an average chunk size of 8KB.
For the resemblance detection, DARE adopts a CDC sliding
window size of 48 bytes to generate features and Xdelta [23]
to compress the detected similar chunks.

Evaluation metrics. We evaluate DARE in the key metrics
of data reduction, similarity degree, computation & index-
ing overheads, data-reduction throughput, and restore
speed. Data reduction here is defined as the percentage of
redundancy removed by deduplication and resemblance
detection. The similarity degree of resemblance-detected

XIA ETAL.: DARE: A DEDUPLICATION-AWARE RESEMBLANCE DETECTION AND ELIMINATION SCHEME FOR DATA REDUCTION WITH...

chunks is measured by the ratio of (compressed size) /
(original size) as discussed in Section 3.4. The indexing
overhead is measured by the number of indexing super-
features (SF for short) stored in RAM, while the compu-
tation overhead is defined by the number of features
computed for resemblance detection. Data-reduction
throughput is measured by the rate at which datasets are
processed, including deduplicating, detecting resem-
blance, and delta compressing. Restore speed is mea-
sured by the rate at each version of the datasets are
restored, including reading the non-similar chunks,
base-chunks, and delta decoding. It is worth noting that
our evaluation testbed is not a production-quality dedu-
plication system, but a research prototype. The results
hence should be interpreted as of approximate and com-
parative in nature.

Datasets. Six well-known open-source projects [45],
[46], [47] representing typical workloads of deduplication
and resemblance detection are used in the evaluation of
DARE as shown in Table 2. These datasets consist of
large tarred files representing sets of source code files or
objects concatenated together by backup software [8].

In order to test the scalability of DARE, we generate
two larger synthetic backup datasets according to the
principles of synthesizing datasets outlined in recent
studies [41], [44]. We obtain the first version of the dataset
from our research group of 16 users with 192 K files and
totaling 42GB, mutate the data by the operations of
“modify”, “delete” and “new” for 20 percent, 1 percent,
and 1 percent of the files respectively in the “Freq” data-
set and 10, 0.5, and 0.5 percent of the files respectively in
the “Less” dataset, and then concatenate individual files
to the tarred files. The file modifications are also applied
in the beginning, middle, and end of the files as suggested
in [41]. The difference between our synthesizing scheme
and the one proposed in [41] is that we mutate the dataset
by file modifications on the real data, which more closely
emulates the process by which similar/redundant data
are generated, while their approach mutates on the finger-
print sets and re-generates random data by the mutated
fingerprints.

RDB is a dataset collected from the Redis key-value
store database [48]. The database has 5 million records,
requiring 5 GB storage space. We ran YCSB [49] to update
the database in a Zipfian distribution. The update rate is 1
percent on average. We backup the uncompressed dump.

TR
=N whs
(o)
o

=LKL
ey
o

w
o

Delta Compression / Total (%)
N
o

Delta Compression / Total (%)

12 3 4 5 6 7 8 9
of features used in a super-feature (N)
(a) SciLab

12 3 4 5 6 7 8 9
of features per super-feature (N)

(b) GCC

1699

TABLE 2
Workload Characteristics of Six Open-Source Project Datasets,
Two Synthetic Backup Datasets, and One Database Dataset
Used in the Performance Evaluation

Datasets versions Size
Emacs-21.4~Emacs-23.4 8 1.15GB
GDB-6.7~GDB-7.4.1 10 1.37 GB
Glibc-2.1.1~Glibc-2.15 35 3.18 GB
SciLab-5.0.1~SciLab-5.3.2 10 4.94 GB
GCC-4.34~GCC-4.7.0 20 8.91 GB
Linux-3.0.0~Linux-3.0.39 40 16.8 GB
Freq (20 percent inc. of newer version) 20 857 GB
Less (10 percent inc. of newer version) 30 1372 GB
RDB (backups of Redis database) 100 540 GB

rdb files as the snapshots of the Redis database, and collect
100 backups, which represents a typical database work-
load for data reduction.

4.2 An Empirical Study of the Super-Feature
Approach

We first examine the impact of the number of features per

SF and the number of SFs used in resemblance detection via

a real-world dataset driven evaluation, which helps answer

question (1) of Section 4.1.

In Fig. 6, we plot the trend of data reduction of the tradi-
tional super-feature approach as a function of the number
of features per SF “N” and the number of SFs ‘M’. We find a
general tendency of redundancy elimination being a
decreasing function of “N” and an increasing function of
‘M’, which is consistent with the results of our mathematical
analysis illustrated in Fig. 4 in Section 3.3. That is, the more
SFs are used, the more resemblance can be exposed to elimi-
nate more redundancy. On the other hand, the more fea-
tures used in generating each SF, the less redundancy will
be eliminated, because the probability of more features in
an SF being identical is smaller than that of fewer features
in an SF.

Note that the redundancy elimination of Linux with one
feature in an SF is less than that with two features in an SF.
This is likely due to the repeated headers in the source files
[12], which will be explained later in Fig. 7c. Nevertheless,
in general, a smaller number of features per SF are shown to
detect more resemblance on all of our datasets, with the
exception on Linux.

==L
TR
SN wh
£
TR
SN WA

1

30

Delta Compression / Total (%)

12 3 4 5 6 7 8 9
of features per super-feature (N)

(c) Linux

Fig. 6. Data reduction of the super-feature approach as a function of the number of features per super-feature and the number of super-features (M,

shaded segments on each bar) on three typical datasets.

1700

100000

100000+

7

i 1]
Z2Z2ZZ2Z
Inon nn
0 AN =

® AN =

10000
100004

1000
1000 4

100

of similar chunks detected
of similar chunks detected

D> S B A B o 100~

A
& .° RS ,>° & F AT S

O O ¢ s

Similarity degree of detected chunks

(a) SciLab

N SPR) o
o Qq' Q“",,)c S”@Q c" NSIGY
OO
Similarity degree of detected chunks

(b) GCC

IEEE TRANSACTIONS ON COMPUTERS, VOL.65, NO.6, JUNE 2016

N

1000004

10000+

1000+

100~

of similar chunks detected

\ ‘s
QQQ(DQQ’\Q“ Q‘D Q Q,\ QQ)\Q%\%\
NN N N NN AN
SIS SRR SN
Similarity degree of detected chunks

(c) Linux

RO

Fig. 7. Similarity degree distribution of detected chunks as a function of the number of features per SF (N, shaded bars in each similarity-degree

range) on the three typical datasets.

To explain the reason why a smaller number of features
per SF can achieve better data reduction efficiency, we
show in Fig. 7 the similarity distribution of the super-fea-
ture approach. Here, the similar chunks are divided into
10 disjoint groups based on their similarity degree
(defined in Section 3.4), with each group corresponding to
one of the 10 ranges of (0, 0.1),...[0.9, 1.0]. Thus, the figure
plots the number of similar chunks detected as a function
of the similarity degree and the number of features per SF.
Fig. 7 clearly and consistently shows that the number of
similar chunks detected is a decreasing function of the
number of features per SF across all the datasets, which
validates our analytical results in Section 3.3. Fig. 7 also
suggests that the false positive rate of resemblance detec-
tion for the SF with a smaller number of features in them
is very low. In fact, less than 5 percent of the two-feature
per SF detected chunks have a similarity degree smaller
than 60 percent. Note that the SF with one feature tends to
detect more similar chunks on the Linux dataset, which
helps explain the data reduction result of the one-feature
per SF in Fig. 6c for the Linux dataset.

To evaluate the overall performance impact of the num-
ber of features per SF, we plot in Fig. 8 the data-reduction
throughput of the super-feature approaches running on
the RAID as a function of the number of features per SF.
We find that the one-feature-per-SF approach has a
lower throughput than the two- or three-features-per-SF
approaches where the highest throughputs are achieved.
This is because the former detects more similar chunks than
the latter and thus induces more random I/Os in reading

50+ —m— Emacs
—e— GDB
—4— Glibc

40+ —v— SciLab

30+
o— \\\V
~——
\‘Ez
-\-

20+

Throughput (MB/sec)
N
|
/.
4
[/
{

109+
1.2 3 4 5 6 7 8 9

of feature per super-feature (N)

Fig. 8. Data-reduction throughput of the four super-features approach as
a function of number of features per SF.

the base-chunks of the resemblance-detected chunks for
delta compression. On the other hand, while approaches
based on three or more features detect less resemblance,
they incur higher computation latency (overhead), which
lowers the throughput.

Fig. 9 shows the data reduction results of the deduplica-
tion and resemblance detection approaches as a function of
the average chunk sizes. It demonstrates that resemblance
detection is very efficient in supplementing deduplication
for data reduction. The larger the average chunk size is, the
less duplicate data are detected. But the resemblance detec-
tion approach can detect almost all the redundant data (e.g.,
similar data) that deduplication fails to identify, regardless
of the average chunk size.

As the Linux dataset has very strong similarity, the two-
feature and four-feature approaches perform almost identi-
cally in Fig. 9. But, generally speaking, the two-feature
approach can detect more redundancy on our real-world
datasets as shown in Fig. 6 and achieves the highest
throughput as shown in Fig. 8. Therefore, we choose to use
a low-overhead super-feature approach in DARE where
there are fewer super-features and each super-feature has
only two features.

4.3 Deduplication-Aware Resemblance Detection

In this section, we evaluate DARE’s resemblance detection
and elimination schemes, i.e., the DupAdj resemblance
detection and the improved super-feature approach with
three SFs and two features per SF., We compare DARE with
the super-feature-only approaches based on three SFs with
two-features per SF (SF-2F) and three SFs with four-features
per SF (SF-4F). Note that DARE'’s resemblance detection here is
thus DupAdj supplemented by SF-2F (i.e., DARE = DupAdj +
SF-2F), where SF-2F is applied only to chunks that DupAdj
has failed to detect as being similar.

Table 3 shows the additional data reduction on top of the
conventional deduplication (Dedupe) achieved by the four
resemblance detection schemes, DupAdj, DARE, SF-2F,
and SF-4F, on the six real-world datasets (both tarred
and untarred). Generally, the DupAdj approach achieves
a resemblance-detection efficiency similar to the SF-4F
approach and DARE detects about 2-6 percent and 3-10 per-
cent more redundancy than the SF-2F and SF-4F approaches
respectively. As indicated in Fig. 7 and discussed in Section
4.2, SF-2F is more sensitive than SF-4F to the chunks with a
lower similarity degree. Thus DARE detects the most

XIA ETAL.: DARE: A DEDUPLICATION-AWARE RESEMBLANCE DETECTION AND ELIMINATION SCHEME FOR DATA REDUCTION WITH...

—®— SF-4F —4— SF-2F —m— Dedupe

—e— SF-4F —4— SF-2F —m— Dedupe

1701

—®— SF-4F —A— SF-2F —m— Dedupe

1004 —v— Total-4F —e— Total-2F - 1007 —v—Total-4F —e— Total-2F S 100, VO Total-4F —e— Total-2F
< = = L e s G Gl S DY
3 D
= 80{ $—¢—e—9o—0o o —] ':*:‘:‘:’ﬂ—‘—oﬂ—. © —e—0—0—8
© ¢ Vﬁv—v—v_v_v‘ \v‘_’ -g 80 v V_V—v—y\v\v % 80 /‘/‘ @
|9 " v = __a—4A = "~ .
= 604 — = 601 A e e = 601 "\
P —a c LG /A/:j.—.’.’ c I
(s} — o n__A e 8
£ 404 =T - B L B g 404
S _A—A—ATD e > &~ — 3 s
S A/A,,A_’.__._.,. ko) (Ny el PS
© 209 g——e—" o 20+ T, £ 204 Sa
Qo S— — e
8 8 8 - —a—u
S o —— ; T — 8 0 3 0

TN 8 F PP v;'\q',\&“
Average chunk size (KB)
(a) SciLab

AN Qb‘\ql rf_’b%.@&/
Average chunk size (KB)
(b) GCC

% DO o > © >
2 © «o@\"/@,
Average chunk size KB)

(c) Linux

Fig. 9. Data reduction as a function of the average chunk size achieved by the approaches of conventional deduplication, the two-features-per-SF
(SF-2F) and the four-features-per-SF (SF-4F). Total-2F and Total-4F refer to Dedupe + SF-2F and Dedupe + SF-4F respectively. Results of other
datasets are similar to those of the GCC dataset and are omitted due to space limit.

TABLE 3
A Comparison among Deduplication, DupAdj, DARE, SF-2F, and SF-4F Approaches in the Data Reduction Measure under
Six Real-World Datasets, Both Tarred and Untarred Versions for a Total of 12 Datasets

Datasets Tarred UnTarred

Emacs GDB Glibc SciLab GCC Linux Emacs GDB Glibc SciLab GCC Linux
Versions 8 10 35 10 20 40 8 10 35 10 20 40
Dedupe 37.1% 48.7% 52.2% 56.9% 39.1% 40.9% 43.5% 70.6% 87.9% 77.5% 83.5% 96.7%
DupAdj +32.1% +335% +292% +19.5% +382% +53.4% +29.6% +109% +29% +52% +7.2% +0.7%
DARE +41.0% +40.8% +36.9% +252% +46.7% +541% +37.7% +182% +7.3% +104% +9.9% +1.0%
SF-2F +33.7% +36.4% +353% +22.6% +452% +54.4% +31.7% +165% +6.6% +9.6% +9.1% +0.9%
SF-4F +282% +334% +304% +18.8% +40.6% +53.5% +28.0% +142% +5.7% +8.1% +7.3% +0.6%

“+” denotes additional data reduction beyond deduplication.

resemblance by combining the DupAdj and SF-2F resem-
blance detection approaches.

Fig. 10 shows the similarity degree distribution of the
resembling chunks detected by DupAdj, DARE, SF-2F, and
SF-4F, which suggests that less than 1.2 and 2.8 percent of
the DARE-detected chunks have a similarity degree smaller
than 50 percent on the GDB and GCC datasets respectively.
On the other hand, the SF-2F- and SF-4F-detected chunks
tend to have a higher similarity degree, which means that
the SF-2F and SF-4F approaches fail to detect the less resem-
bling chunks and thus have a lower data reduction rate
than DARE as shown in Table 3.

Fig. 11a shows that the average similarity degree of the
resembling chunks detected by the DARE, SF-2F, and SF-4F
approaches is about 0.890, 0.922, and 0.965 respectively.
Meanwhile, the average similarity degree of the DupAdj-
detected chunks is about 0.885 as suggested in Fig. 2b in

100% —=— DupAdj 100%-4 —=— DupAdj
—e— DARE —eo— DARE
80%1 _a—SF2F 80%1 —a— SF-2F
60% —v— SF-4F 60% —v— SF-4F
w w
S 0% 8 40%

20%

0%
Y B G By AN DY By R
Qe"\e"’ SRANATAR PN

CPRDN DR
S99 Y

Similarity degree of detected chunks

(b) GCC

RN
QQ\Q ISR on ‘,OQ,\Q%QQQ'

\ QRO OLE®
Similarity degree of detected chunks

(a) GDB

Fig. 10. CDF of the data chunks detected by the DupAdj, DARE, SF-2F,
and SF-4F approaches as a function of the similarity degree on the two
typical datasets.

Section 2.2. Therefore, the results shown in Figs. 2, 10, and
11a demonstrate that DupAdj and DARE are very effective
and efficient in detecting resemblance among the post-
deduplication chunks with a very low false-positive rate. In
addition, the average similarity degree of DupAdj may be
increased by appropriately adjusting the predefined resem-
blance detection threshold as discussed in Section 3.2.

Figs. 11b and 11c show the computation and indexing
overheads incurred by the three resemblance detection
schemes. Since the DupAdj approach only detects resem-
blance by exploiting the duplicate-adjacency information
(with a doubly-linked list as shown in Fig. 3), here we only
compare DARE with the SF-2F and SF-4F approaches for
resemblance detection overheads. Obviously, SF-4F, which
computes more features but detects less resemblance, con-
sumes the most amounts of computation and indexing
resources for resemblance detection. DARE uses the same
super-feature parameters as SF-2F but incurs only half of
the computation and indexing overheads of the SF-2F
approach because of DupAdj's very effective pre-screening
of similar chunks. In fact, DARE can further reduce the
number of super-features while achieving a comparable
resemblance detection efficiency to the SF-2F approach.

4.4 Scalability of DARE

In order to better evaluate the scalability of DARE on three
larger datasets, we have implemented the schemes of
stream-informed delta compression [12] in SilLo [29], a
memory-efficient deduplication system that exploits the
backup-stream similarity and locality. As introduced
in Section 2.1, SIDC only detects resemblance in the

1702

W DARE 77777 SF-2F il SF-AF

[DARE

10M-

7 7

8M1
6M1
4M
2M+

N\
AN

7 oM

GCC LNX

% 7 A
Emacs GDB Glibc SCI

Datasets
(a) Average similarity degree

of computed features

Datasets

(b) Computation Overhead

IEEE TRANSACTIONS ON COMPUTERS, VOL.65, NO.6, JUNE 2016

0.4M-

2 [DARE

5 B SF-2F

£ 0.3M{ NN SF-4F

(0]

[T

A 0.2M-

()]

£ -
R

3 0.1M1

°

‘5 0.0MA o

3+ Emacs GDB Glibc SCI GCC LNX

Datasets

(c) Indexing Overhead

Fig. 11. A comparison among DARE, SF-2F, and SF-4F in terms of the similarity degree and the computation & indexing overheads.

backup-stream locality-preserved cache that can reduce the
indexing overhead of SFs and scales well in large-scale
deduplication system. Thus we employ their method to test
the scalability of different resemblance detection schemes
and implement Sil.o with a 20 MB locality cache (similar to
SIDC [12]) and a segment size of 1IMB. The stream-informed
approaches are denoted by the “Cached/Cac.” prefix in
Table 4 and Fig. 13.

Table 4 shows the data reduction results of different
deduplication and resemblance detection schemes. Since
SiLo achieves nearly 99 percent deduplication efficiency
of the exact deduplication (i.e., full index in memory)
while requiring substantially less memory overhead
(about 1/250 of the exact deduplication approach) for fin-
gerprint indexing [29], we only discuss the results of
resemblance detection after SiLo’s deduplication here.
The first column under a dataset (Freq or Less or RDB) in
Table 4 shows the percentages of data reduction and the
second column shows the data reduction factor (the ratio
of before/after data reduction).

As shown in Table 4, resemblance detection further
reduces the storage space, after the deduplication process,
by a factor of about 2.5, meaning that we can save about
60 percent of the post-deduplication storage space by resem-
blance-detecting post-deduplication chunks. DARE achieves
a superior data reduction efficiency on both datasets while
the cached SF-2F and SF-4F schemes detect less resemblance,
which is consistent with the results on our real-world data-
sets summarized in Table 3. Table 4 also shows that the
cached SF-2F and SF-4F schemes fail to detect a noticeable
amount of resemblance due to the sometimes weak or lack

TABLE 4
A Comparison among the Duplicate-Detection and
Resemblance-Detection Approaches in Terms of
Data Reduction Efficiency on Three Larger Backup
Datasets Freq, Less, and RDB

Datasets Freq Less RDB

Dedupe 84.6% 65X 912% 114X 957% 232
SiLo/D 844% 64X 912% 114X 957% 232
Cac. DARE +9.28% *2.5X +5.01% *2.3X +2.97% *3.2X
Cac.SF-2F +7.01% *1.8X +4.31% *2.0X +2.95% *3.1X
Cac. SF-4F +5.32% *1.5X +327% *1.6X +2.82% *2.9X
Ful. SF-2F 49.61% *2.6X +5.04% *2.3X +2.97% *3.2X

The “+” (“*”) sign in front of a reduction percentage (factor) indicates the
“additional” post-deduplication data reduction.

thereof locality in the backup stream. The SIDC study also
discussed this issue as the limitations of stream-informed
cache [12]. We argue that DARE solves this problem reason-
ably well by detecting resemblance based on duplicate-adja-
cency in the stream-informed cache.

To further understand the scalability of DARE, Fig. 12
shows the percentages of resemblance detected by its
DupAdj detection and by the SF-2F and SF-4F approaches
showing the individual contributions by the first SF, the sec-
ond SF, and the third SF, on the three backup datasets.
DupAdj is very effective and efficient in detecting resem-
blance in the deduplication system with abundant
duplicate-adjacency information (i.e., dedupe factor > 5),
leaving DARE’s improved super-feature approach very lit-
tle (smaller than 1 percent), if any, additional resemblance
to detect (see the DARE bars).

Fig. 13 shows that DARE achieves the highest through-
puts among all the resemblance detection enhanced data
reduction approaches compared running on both RAID-
structured HDDs and the SSD. DARE achieve lower
throughputs than the SiLo/D approach, which is because
SiLo/D only does deduplication (i.e., Rabin-based chunking
and SHA1-based fingerprinting) while DARE involves more
computation tasks and I/Os by delta compression (.e.,
resemblance detection, reading base chunks, and delta
encoding). Cached SF-4F has the lowest throughput because
it incurs the largest computation overhead for resemblance
detection. It is noteworthy that DARE’s average data-reduc-
tion throughput on RAID, at 50 MB/s, is much lower than
DARE’s average throughput of 85 MB/s on SSD. The root
cause of RAID’s inferior data-reduction performance (in
Fig. 13a) mainly lies in the random reads of the base-chunks

o SF-4F BN 3SF

o SF-2F . 2SF

X DAREER B2 1sF

L B2 DupAd;j

w SF-4F

$ SF-2F

— D ARE B

o SF-4F

© SF-2F

L R R R R R R R R]

DA RE B e]

0 2 4 6 8 10
Delta Compressed / Total (%)
Fig. 12. Percentages of data reduced by DupAdj, and the first SF, second

SF, third SF of the super-feature approach respectively in the stream-
informed DARE, SF-2F, and SF-4F approaches.

XIA ETAL.: DARE: A DEDUPLICATION-AWARE RESEMBLANCE DETECTION AND ELIMINATION SCHEME FOR DATA REDUCTION WITH...

A 8 B SiLo/D
g 60 Ful.SF-2F
a EEm Cac.DARE
§’40 I Cac.SF-2F
3 3 Cac.SF-4F
=%
< 20
[=)
3
g ol B
[= Freq Less
Datasets
(a) Throughput on RAID
—~ 100

[SiLo/D
Ful.SF-2F
B Cac.DARE
Cac.SF-2F
Cac.SF-4F

[o23e]
o o

N
o

N\

Throughput (MB/sec
'S
o o

req Less
Datasets
(b) Throughput on SSD

Fig. 13. Throughputs of four resemblance detection enhanced data
reduction approaches (i.e., deduplication + delta compression) on the
three backup datasets. The deduplication-only approach (i.e., SiLo/D) is
also shown for comparison.

due to the lack or limitation of accessing locality [17]. This is
the reason why DARE on SSD (in Fig. 13b) achieves a simi-
lar throughput to the deduplication-only approach (aver-
aged 91 MB/s on SSD and 74 MB/s on RAID) while
reducing more redundant data to be stored.

In general, DARE achieves a superior performance of
both throughput and data reduction efficiency among all
the resemblance detection enhanced data reduction
approaches. Furthermore and importantly, our analysis of
the execution times by the four data-reduction steps (see
Fig. 5 and Section 3.5) based on data from Fig. 13 suggests
that the average throughputs of resemblance detection on
non-duplicate data of DARE, SF-2F, and SF-4F are 154, 60,
and 30 MB/s respectively. The throughput results of SF-2F
and SF-4F are consistent with the results shown in Fig. 4b.
The main contributor to DARE’s much higher resemblance-
detection throughput is its DupAdj based resemblance
detection scheme, as implied in Fig. 12. This suggests that
DARE is shifting the bottleneck of data reduction from Step
2 to the other steps (e.g., Step 1 or 3), and the performance
impact of this shifting will likely be much more pronounced
when larger indexing cache is used and/or when the
emerging storage class memory (SCM) devices (e.g., Nand
Flash, PCM, STTRAM, etc.) replace or supplement HDDs.

3604 —=—DARE § 18007 —=—DARE
- ——SF2F ® —e—SF-2F
§ 3001 —a— SF-4F £ 15001 ——SF-4F
o 2401 —v—Dedupe 2 —v— Dedupe
= 5 1200
3 18] 3
2 9004
& 120 o
Q 9]
c 4
% 604 F 600
c
T 9 : : ‘ .3 300 : ‘ ‘ ‘
0 10 20 30 40 0 10 20 30 40

Backup version
(a) Restoration throughput

Backup version
(b) Containers read for restoration

Fig. 14. Data-restore performance as a function of the backup version on
the Linux dataset with an LRU cache of size 256 MB.

1703
4001 —« DARE § '%%] —=—DARE
= ® —e— SF-2F
g %20 3 120k| —+—SF-4F
@ I —— Dedupe
= 2404)
§ g 90K
2 1601 °
o)
g 80 § 60K+
k7] £
4 54
N eyt TR 30K -—
0 5 10 15 20 25 30 0 5 10 15 20 25 30

Backup version Backup version

(a) Restoration throughput (b) Conatiners read for restoration

Fig. 15. Data-restore performance as a function of the backup version
on the Less dataset with an LRU cache of size 512 MB. Results of
other datasets are similar to the Less dataset and are omitted due to
space limit.

4.5 Restoration Performance

Intuitively, delta compression should slow down the data-
restore performance of a data-reduction system since it
needs to restore the resembling chunks by two reads, one
for the delta data and the other for the base-chunk, and then
delta decode them. But in our evaluation of the restore oper-
ations for resembling chunks, we find that the speed of delta
decode (i.e., Xdelta [23]) tends to be very fast, about 1 GB/s
in the DARE system. Another interesting observation is
that, for a restoration cache of a given size, DARE will effec-
tively cache more logical content than a deduplication-only
system because of DARE'’s additional enhanced delta com-
pression, which has a space-efficient effect similar to Differ-
ence Engine [20] and I-CASH [18] that employ delta
compression to enlarge the memory and SSD cache space
respectively.

Figs. 14a and 15a show that DARE on average doubles
the data-restore speed of the deduplication-only system
(both running on the RAID). Figs. 14b and 15b clearly show
that the reason lies in the fact that DARE reads half as many
the containers for restoration as the deduplication-only sys-
tem. The superior data-restore performance of DARE, SF-
2F, and SF-4F to the deduplication-only system is attributed
to their data reduction efficiency (see Tables 3 and 4). The
sudden increase in the data-restore performance of the
deduplication-only approach at the backup version 17
(Fig. 15a), we observe, is due to the fact that most of the
backed-up sources targeted for restoration are from the cur-
rent and recent backups and thus have fewer random reads
for restoration.

Nevertheless, the trend in the evaluation results of Figs. 14
and 15 clearly indicates that in general the data-restore per-
formance in data reduction systems decreases as a function
of the number of backups (version), and DARE and other
super-feature based approaches outperform the deduplica-
tion-only approach by further removing redundancy and
thus effectively enlarging the restoration cache via delta
compression. In addition, DARE achieves a better restore
performance than other super-feature based approaches
because of its higher compressibility by combining its pro-
posed DupAdjand the improved super-feature schemes.

5 CONcCLUSION AND FUTURE WORK

In this paper, we present DARE, a deduplication-aware,
low-overhead resemblance detection and elimination
scheme for data reduction in backup/archiving storage

1704

systems. DARE uses a novel approach, DupAdj, which
exploits the duplicate-adjacency information for efficient
resemblance detection in existing deduplication systems,
and employs an improved super-feature approach to fur-
ther detecting resemblance when the duplicate-adjacency
information is lacking or limited.

Results from experiments driven by real-world and syn-
thetic backup datasets suggest that DARE can be a powerful
and efficient tool for maximizing data reduction by further
detecting resembling data with low overheads. Specifically,
DARE only consumes about 1/4 and 1/2 respectively of the
computation and indexing overheads required by the tradi-
tional super-feature approaches while detecting 2-10 per-
cent more redundancy and achieving a higher throughput.
Furthermore, the DARE-enhanced data reduction approach
is shown to be capable of improving the data-restore perfor-
mance, speeding up the deduplication-only approach by a
factor of 2(2X) by employing delta compression to further
eliminate redundancy and effectively enlarge the logical
space of the restoration cache.

Our preliminary results on the data-restore performance
suggest that supplementing delta compression to dedupli-
cation can effectively enlarge the logical space of the restora-
tion cache, but the data fragmentation in data reduction
systems remains a serious problem. We plan to further
study and improve the data-restore performance of storage
systems based on deduplication and delta compression in
our future work.

ACKNOWLEDGMENTS

The authors are grateful to the anonymous reviewers for
their insightful comments and constructive suggestions.
The work was partly supported by Chinese 973 Program
No. 2011CB302301; NSFC No. 61025008, 61173043,
61232004, and 61303046, 863 Project 2013AA013203; US
National Science Foundation (NSF) under Grants CNS-
111660, and CNS-1016609; Fundamental Research Funds for
the Central Universities, HUST, under Grant No.
2014QNRCO019. This work was also supported by Key Labo-
ratory of Information Storage System, Ministry of Educa-
tion, China. The work of Lei Tian was done while he was
working at the CSE Dept. of UNL. Dan Feng is the corre-
sponding author. A 10-page conference version of this
paper appeared in Proceedings of the 2014 Data Compres-
sion Conference (DCC’14). In this journal version, we
included more substantial descriptions of research motiva-
tion & implementation on DARE and additional measure-
ment results from our analysis and testbed experiments.

REFERENCES

[1] The data deluge [Online]. Available: http://econ.st/fzkuDq

[2]]. Gantz and D. Reinsel, “Extracting value from chaos,” IDC Rev.,
vol. 1142, pp. 1-12, 2011.

[3] L. DuBois, M. Amaldas, and E. Sheppard, “Key considerations as
deduplication evolves into primary storage,” White Paper 223310,
Framingham, MA, USA: IDC, Mar. 2011.

[4] W.]. Bolosky, S. Corbin, D. Goebel, and]J. R. Douceur, “Single
instance storage in windows 2000,” in Proc. 4th USENIX Windows
Syst. Symp., Aug. 2000, pp. 13-24.

[5] S. Quinlan and S. Dorward, “Venti: A new approach to archival
storage,” in Proc. USENIX Conf. File Storage Technol., Jan. 2002,
pp- 89-101.

(6]

[7]

[8]

[91

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

IEEE TRANSACTIONS ON COMPUTERS, VOL.65, NO.6, JUNE 2016

B. Zhu, K. Li, and R. H. Patterson, “Avoiding the disk bottleneck
in the data domain deduplication file system,” in Proc. 6th USE-
NIX Conf. File Storage Technol., Feb. 2008, vol. 8, pp. 1-14.

D. T. Meyer and W.]. Bolosky, “A study of practical
deduplication,” ACM Trans. Storage, vol. 7, no. 4, p. 14, 2012.

G. Wallace, F. Douglis, H. Qian, P. Shilane, S. Smaldone, M.
Chamness, and W. Hsu, “Characteristics of backup workloads in
production systems,” in Proc. 10th USENIX Conf. File Storage Tech-
nol., Feb. 2012, pp. 33-48.

A. El-Shimi, R. Kalach, A. Kumar, A. Ottean, J. Li, and
S. Sengupta, “Primary data deduplication-large scale study and
system design,” in Proc. Conf. USENIX Annu. Tech. Conf., Jun.
2012, pp. 285-296.

L. L. You, K. T. Pollack, and D. D. Long, “Deep store: An archival
storage system architecture,” in Proc. 21st Int. Conf. Data Eng.,
Apr. 2005, pp. 804-815.

A. Muthitacharoen, B. Chen, and D. Mazieres, “A low-bandwidth
network file system,” in Proc. ACM Symp. Oper. Syst. Principles.,
Oct. 2001, pp. 1-14.

P. Shilane, M. Huang, G. Wallace, and W. Hsu, “WAN optimized
replication of backup datasets using stream-informed delta
compression,” in Proc. 10th USENIX Conf. File Storage Technol.,
Feb. 2012, pp. 49-64.

S. Al-Kiswany, D. Subhraveti, P. Sarkar, and M. Ripeanu,
“Vmflock: Virtual machine co-migration for the cloud,” in
Proc. 20th Int. Symp. High Perform. Distrib. Comput., Jun. 2011,
pp- 159-170.

X. Zhang, Z. Huo, J. Ma, and D. Meng, “Exploiting data dedupli-
cation to accelerate live virtual machine migration,” in Proc. IEEE
Int. Conf. Cluster Comput., Sep. 2010, pp. 88-96.

F. Douglis and A. Iyengar, “Application-specific delta-encoding
via resemblance detection,” in Proc. USENIX Annu. Tech. Conf.,
General Track, Jun. 2003, pp. 113-126.

P. Kulkarni, F. Douglis, J. D. LaVoie, and]J. M. Tracey,
“Redundancy elimination within large collections of files,” in
Proc. USENIX Annu. Tech. Conf., Jun. 2012, pp. 59-72.

P. Shilane, G. Wallace, M. Huang, and W. Hsu, “Delta compressed
and deduplicated storage using stream-informed locality,” in
Proc. 4th USENIX Conf. Hot Topics Storage File Syst., Jun. 2012,
pp. 201-214.

Q. Yang and]. Ren, “I-cash: Intelligently coupled array of SSD and
HDD,” in Proc. 17th IEEE Int. Symp. High Perform. Comput. Archit.,
Feb. 2011, pp. 278-289.

G. Wu and X. He, “Delta-FTL: Improving SSD lifetime via exploit-
ing content locality,” in Proc. 7th ACM Eur. Conf. Comput. Syst.,
Apr. 2012, pp. 253-266.

D. Gupta, S. Lee, M. Vrable, S. Savage, A. C. Snoeren, G. Varghese,
G. M. Voelker, and A. Vahdat, “Difference engine: Harnessing
memory redundancy in virtual machines,” in Proc. 5th Symp.
Oper. Syst. Design Implementation., Dec. 2008, pp. 309-322.

B. Debnath, S. Sengupta, and J. Li, “Chunkstash: Speeding up
inline storage deduplication using flash memory,” in Proc. USE-
NIX Conf. USENIX Annu. Tech. Conf., Jun. 2010, pp. 1-14.

R. C. Burns and D. D. Long, “Efficient distributed backup with
delta compression,” in Proc. 5th Workshop 1/O Parallel Distrib. Syst.,
Nov. 1997, pp. 27-36.

J. MacDonald, “File system support for delta compression,” Mas-
ter’s thesis, Dept. of Electr. Eng. Comput. Sci., Univ. California at
Berkeley, Berkeley, CA, USA, 2000.

C. Dubnicki, L. Gryz, L. Heldt, M. Kaczmarczyk, W. Kilian,
P. Strzelczak, J. Szczepkowski, C. Ungureanu, and M. Welnicki,
“Hydrastor: A scalable secondary storage,” in Proc. USENIX Conf.
File Storage Technol., Feb. 2009, pp. 197-210.

M. Lillibridge, K. Eshghi, D. Bhagwat, V. Deolalikar, G. Trezis,
and P. Camble “Sparse indexing: Large scale, inline deduplication
using sampling and locality,” in Proc. 7th USENIX Conf. File Stor-
age Technol., Feb. 2009, pp. 111-123.

L. Aronovich, R. Asher, E. Bachmat, H. Bitner, M. Hirsch, and S. T.
Klein, “The design of a similarity based deduplication system,” in
Proc. Israeli Experimental Syst. Conf., May 2009, pp. 1-12.

F. Guo and P. Efstathopoulos, “Building a high-performance
deduplication system,” in Proc. USENIX Conf. USENIX Annu.
Tech. Conf., Jun. 2011, pp. 271-284.

D. Bhagwat, K. Eshghi, D. D. E. Long, and M. Lillibridge,
“Extreme binning: Scalable, parallel deduplication for chunk-
based file backup,” in Proc. IEEE Int. Symp. Model., Anal. Simul.
Comput. Telecommun. Syst., Sep. 2009, pp. 1-9.

XIA ETAL.: DARE: A DEDUPLICATION-AWARE RESEMBLANCE DETECTION AND ELIMINATION SCHEME FOR DATA REDUCTION WITH...

[29] W. Xia, H. Jiang, D. Feng, and Y. Hua, “Silo: A similarity-locality
based near-exact deduplication scheme with low RAM overhead
and high throughput,” in Proc. USENIX Conf. USENIX Annu.
Tech. Conf., Jun. 2011, pp. 285-298.

K. Eshghi and H. K. Tang, “A framework for analyzing and
improving content-based chunking algorithms,” Hewlett Packard
Labs., Palo Alto, CA, USA, Tech. Rep. HPL-2005-30(R.1), 2005.

E. Kruus, C. Ungureanu, and C. Dubnicki, “Bimodal content
defined chunking for backup streams,” in Proc. 7th USENIX Conf.
File Storage Technol., 2010, p. 18.

B. Romanski, £. Heldt, W. Kilian, K. Lichota, and C. Dubnicki,
“Anchor-driven subchunk deduplication,” in Proc. 4th Annu. Int.
Syst. Storage Conf., May 2011, pp. 1-13.

G. Ly, Y. Jin, and D. H. Du, “Frequency based chunking for data
de-duplication,” in Proc. IEEE Int. Symp. Model., Anal. Simul. Com-
put. Telecommun. Syst., Aug. 2010, pp. 287-296.

M. Rabin, “Fingerprinting by random polynomials,” Center Res.
Comput. Techn., Aiken Comput. Lab., Harvard Univ., Cam-
bridge, MA, USA, 1981.

N. Jain, M. Dahlin, and R. Tewari, “Taper: Tiered approach for
eliminating redundancy in replica synchronization,” in Proc. USE-
NIX Conf. File Storage Technol., Mar. 2005, pp. 281-294.

M. Fu, D. Feng, Y. Hua, X. He, Z. Chen, W. Xia, Y. Zhang, and Y.
Tan, “Design tradeoffs for data deduplication performance in
backup workloads,” in Proc. 13th USENIX Conf. File Storage Tech-
nol., 2015, pp. 331-344.

D. Meister and A. Brinkmann, “Multi-level comparison of data
deduplication in a backup scenario,” in Proc. Israeli Experimental
Syst. Conf., May 2009, pp. 13-24.

A. Broder, “Identifying and filtering near-duplicate documents,”
in Proc. 11th Annu. Symp. Combinatorial Pattern Matching, Jun.
2000, pp- 1-10.

A. Broder, “On the resemblance and containment of documents,”
in Proc. Compression Complexity Sequences., Jun. 1997, pp. 21-29.

U. Manber, et al., “Finding similar files in a large file system,” in
Proc. USENIX Winter Tech. Conf., Jan. 1994, pp. 1-10.

V. Tarasov, A. Mudrankit, W. Buik, P. Shilane, G. Kuenning,
and E. Zadok, “Generating realistic datasets for deduplication
analysis,” in Proc. USENIX Conf. Annu. Tech. Conf., Jun. 2012,
pp. 261-272.

D. Meister,]J. Kaiser, and A. Brinkmann, “Block locality caching
for data deduplication,” in Proc. 6th Int. Syst. Storage Conf., 2013,
pp- 1-12.

A. Broder, “Some applications of Rabin’s fingerprinting method,”
in Sequences 1I: Methods in Communications, Security, and Computer
Science. New York, NY, USA: Springer, 1993, pp. 1-10.

M. Lillibridge, K. Eshghi, and D. Bhagwat, “Improving restore
speed for backup systems that use inline chunk-based
deduplication,” in Proc. 11th USENIX Conf. File Storage Technol.,
Feb. 2013, pp. 183-197.

GNU software archive [Online]. Available: http://ftp.gnu.org/
gnu/

Scilab archive [Online]. Available: ftp://ftp.kernel.org

Linux archive [Online]. Available: ftp://ftp kernel.org

Redis key-value database [Online]. Available: http:/ /redis.io/

B. F. Cooper, A. Silberstein, E. Tam, R. Ramakrishnan, and R.
Sears, “Benchmarking cloud serving systems with YCSB,” in Proc.
1st ACM Symp. Cloud Comput., 2010, pp. 143-154.

[30]

[31]

[32]

[33]

[34]

[35]

[36]

[37]

[38]

[39]
[40]

[41]

[42]

[43]

[44]

[45]

[46]
[47]
[48]
[49]

Wen Xia received the PhD degree in computer
science from the Huazhong University of Science
and Technology (HUST), Wuhan, China, in 2014.
He is currently an assistant professor in the
School of Computer Science and Technology,
HUST. His research interests include deduplica-
tion, delta compression, storage systems, and
cloud storage. He publishes more than 10 papers
in major journals and international conferences
including IEEE TC, USENIX ATC, USENIX FAST,
INFOCOM, IFIP Performance, IEEE DCC,

e

MSST, etc. He is a member of the IEEE.

1705

Hong Jiang received the BSc degree in com-
puter engineering from the Huazhong University
of Science and Technology, Wuhan, China, in
1982, the MASc degree in computer engineering
from the University of Toronto, Toronto, Canada,
in 1987, and the PhD degree in computer science
from the Texas A&M University, Texas, in 1991.
Since August 1991, he has been at the University
of Nebraska-Lincoln, Lincoln, NE, where he is a
Willa Cather professor of computer science and
engineering. His present research interests
include computer architecture, computer storage systems and parallel
1/0, high-performance computing, big data computing, cloud computing,
performance evaluation. He has more than 200 publications in major
journals and international Conferences in these areas, including IEEE-
TC, IEEE-TPDS, ACM-TACO, JPDC, ISCA, MICRO, USENIX ATC,
FAST, LISA, ICDCS, IPDPS, MIDDLEWARE, OOPLAS, ECOOPR, SC,
ICS, HPDC, ICPP. He is a fellow of the IEEE and a member of the ACM.

Dan Feng received the BE, ME, and PhD
degrees in computer science and technology in
1991, 1994, and 1997, respectively, from the
Huazhong University of Science and Technology
(HUST), China. She is a professor and vice dean
of the School of Computer Science and Technol-
ogy, HUST. Her research interests include com-
puter architecture, massive storage systems, and
parallel file systems. She has more than 100 pub-
lications in major journals and international con-
ferences, including IEEE-TC, IEEE-TPDS, ACM-
TOS, JCST, FAST, USENIX ATC, ICDCS, HPDC, SC, ICS, IPDPS, and
ICPP. She serves as the program committees of multiple international
conferences, including SC 2011, 2013 and MSST 2012, 2015. She is a
member of the IEEE and a member of ACM.

Lei Tian received the PhD degree in computer
engineering from the Huazhong University of
Science and Technology (HUST) in 2010. His
research interests mainly lie in storage systems,
distributed systems, cloud computing, and big
data. He has more than 30 publications in major
journals and conferences including FAST, HOT-
STORAGE, ICS, SC, HPDC, ICDCS, MSST, MAS-
COTS, ICPR, IPDPS, CLUSTER, IEEE TC, IEEE
TPDS, ACM TOS, etc. He is a senior member of
the IEEE, and a member of the ACM and USENIX.

> For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/publications/dlib.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Algerian
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BaskOldFace
 /Batang
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FootlightMTLight
 /FreestyleScript-Regular
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /InformalRoman-Regular
 /Jokerman-Regular
 /JuiceITC-Regular
 /KristenITC-Regular
 /KuenstlerScript-Black
 /KuenstlerScript-Medium
 /KuenstlerScript-TwoBold
 /KunstlerScript
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSansUnicode
 /Magneto-Bold
 /MaturaMTScriptCapitals
 /MediciScriptLTStd
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MS-Mincho
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NuptialScript
 /OldEnglishTextMT
 /Onyx
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Parchment-Regular
 /Playbill
 /PMingLiU
 /PoorRichard-Regular
 /Ravie
 /ShowcardGothic-Reg
 /SimSun
 /SnapITC-Regular
 /Stencil
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanMTStd
 /TimesNewRomanMTStd-Bold
 /TimesNewRomanMTStd-BoldCond
 /TimesNewRomanMTStd-BoldIt
 /TimesNewRomanMTStd-Cond
 /TimesNewRomanMTStd-CondIt
 /TimesNewRomanMTStd-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryStd-Demi
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Suggested" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

