
AE: An Asymmetric Extremum Content Defined
Chunking Algorithm for Fast and

Bandwidth-Efficient Data Deduplication

Yucheng Zhang†, Hong Jiang‡, Dan Feng†*, Wen Xia†, Min Fu†, Fangting Huang†, Yukun Zhou†
†Wuhan National Laboratory for Optoelectronics

School of Computer, Huazhong University of Science and Technology, Wuhan, China
‡University of Nebraska-Lincoln, Lincoln, NE, USA

*Corresponding author: dfeng@hust.edu.cn

Abstract—Data deduplication, a space-efficient and
bandwidth-saving technology, plays an important role in
bandwidth-efficient data transmission in various data-intensive
network and cloud applications. Rabin-based and MAXP-based
Content-Defined Chunking (CDC) algorithms, while robust
in finding suitable cut-points for chunk-level redundancy
elimination, face the key challenges of (1) low chunking
throughput that renders the chunking stage the deduplication
performance bottleneck and (2) large chunk-size variance that
decreases deduplication efficiency. To address these challenges,
this paper proposes a new CDC algorithm called the Asymmetric
Extremum (AE) algorithm. The main idea behind AE is based
on the observation that the extreme value in an asymmetric local
range is not likely to be replaced by a new extreme value in
dealing with the boundaries-shift problem, which motivates AE’s
use of asymmetric (rather than symmetric as in MAXP) local
range to identify cut-points and simultaneously achieve high
chunking throughput and low chunk-size variance. As a result,
AE simultaneously addresses the problems of low chunking
throughput in MAXP and Rabin and high chunk-size variance
in Rabin. The experimental results based on four real-world
datasets show that AE improves the throughput performance
of the state-of-the-art CDC algorithms by 3x while attaining
comparable or higher deduplication efficiency.

I. INTRODUCTION
According to a study of International Data Corporation (ID-

C), the amount of digital information generated in the whole
world is about 1.8ZB in 2012, and that amount will reach 40ZB
by 2020 [1]. How to efficiently store and transfer such large
volumes of digital data is a challenging problem. Moreover,
IDC also shows that about three quarters of digital information
is duplicated. As a result, data deduplication, a space and
bandwidth efficient technology that prevents redundant data
from being stored in storage devices and transmitted over the
networks, is one of the most important methods to tackle
this challenge. Due to its significant data reduction efficiency,
chunk-level deduplication is used in various fields, such as
storage systems [2], [3], Redundancy Elimination (RE) in
networks [4], [5], file-transfer systems (rsync [6]) and remote-
file systems (LBFS [7]).

Chunk-level deduplication schemes divide the input data
stream into chunks and then hash each chunk to generate its
fingerprint that uniquely identifies the chunk. Duplicate chunks
can be removed if their fingerprints are matched with those of
previously stored or transmitted chunks. As the first and key
stage in the chunk-level deduplication workflow, the chunking

algorithm is responsible for dividing the input data stream into
chunks of either fixed size or variable size for redundancy de-
tection. Fix-Sized Chunking (FSC) [8] marks chunks’ bound-
aries by their positions and thus is simple and extremely fast.
The main drawback of FSC is its low deduplication efficiency
that stems from the boundaries-shift problem. For example, if
one byte is inserted at the beginning of an input data stream, all
current chunk boundaries declared by FSC will be shifted and
no duplicate chunks will be identified and eliminated. Content-
Defined Chunking (CDC) divides the input data stream into
variable-sized chunks. It solves the boundaries-shift problem
by declaring chunk boundaries depending on local content. As
a result, the CDC algorithm outperforms the FSC algorithm
in terms of deduplication efficiency and has been widely used
in bandwidth- and storage-efficient applications [9], [10]. To
provide the necessary basis to facilitate the discussion of and
comparison among different CDC algorithms, we list below
some key properties that a desirable CDC algorithm should
have.

1) Content defined. To avoid the boundaries-shift problem,
the algorithm should declare the chunk boundaries based
on local content, i.e., the cut-points for chunking must be
content defined.

2) Low computational overhead. CDC algorithms need to
check almost every byte in an input data stream to
find the chunk boundaries. This means that the algorith-
m execution time is approximately proportional to the
number of bytes of the input data stream, which can
take up significant CPU resources. Hence, in order to
achieve higher deduplication throughput, the chunking
algorithm should be simple and devoid of time-consuming
operations.

3) Small chunk size variability. The variance of chunk size
has a significant impact on the deduplication efficiency.
The smaller the variance of the chunk size is, the higher
the deduplication efficiency will be achieved [11].

4) Ability to identify and eliminate low-entropy strings.
The content of real data may sometimes include low-
entropy strings [12]. These strings include very few
distinct characters but a large amount of repetitive bytes.
In order to achieve higher deduplication efficiency, it is
desirable for the algorithm to be capable of detecting and
eliminating these duplicate strings.

5) Less limitations on chunk size. Minimum and maximum

2015 IEEE Conference on Computer Communications (INFOCOM)

978-1-4799-8381-0/15/$31.00 ©2015 IEEE 1337

thresholds are often imposed on chunk size to avoid
chunks being too short or too long. These measures
reduce chunk size variance, but also make the chunk
boundaries position-dependent and thus not truly content-
defined, which also reduces the deduplication efficiency
[13].

The Rabin fingerprint [14] based CDC algorithm (Rabin)
is widely employed for redundancy elimination in both storage
systems [15], [2], [16] and networks [5], [17]. The main prob-
lems of the Rabin algorithm are its low chunking throughput,
which renders the chunking process the performance bottle-
neck of the deduplication workflow [18], [19], and large chunk
size variance that lowers the deduplication efficiency [11].
MAXP [20] is a CDC approach that addresses the chunk-size
variance problem of Rabin by treating the local extreme values
as cut-points. Owing to its smaller chunk size variance and
lower memory overhead than Rabin, MAXP was recommended
to be used in redundancy elimination in networks [10], [21].
MAXP slides a fix-sized symmetric window over the byte
stream on a byte-by-byte basis, and checks whether the value
of the byte at the center of the current window is the strictly
extreme value in the window. The byte found to be the extreme
value is declared a cut-point (chunk boundary). This strategy
of finding the local maximum values dictates that the MAXP
algorithm recheck some previously compared bytes in the
reverse direction of the stream and thus requires more than one
comparison and more than five conditional branch operations
per byte scanned [22], which significantly lowers its chunking
throughput.

In other words, while the MAXP algorithm improves
the Rabin algorithm by reducing the chunk-size variance,
the problem of low chunking throughput remains in both
algorithms. To this end, we propose the Asymmetric Extremum
chunking algorithm (AE), a new CDC algorithm that signifi-
cantly improves the chunking throughput of the above existing
algorithms while providing comparable or better deduplication
efficiency by using the local extreme value in a variable-
sized asymmetric window to overcome the aforementioned
boundaries-shift problem. With a variable-sized asymmetric
window, instead of a fix-sized symmetric window as in MAXP,
the AE algorithm finds the extreme value in the window
without having to backtrack and thus requiring only one
comparison and two conditional branch operations per byte
scanned. Therefore, AE’s simplicity makes it very fast. It also
has smaller chunk size variance than existing CDC algorithms
and imposes no limitation on chunk size. Moreover, AE is
able to eliminate more low-entropy strings than the other
algorithms. Our experimental evaluations of AE, based on
four real-world datasets, show that AE achieves a chunking
throughput of 1GBytes/s, which is about 3× higher than the
state-of-the-art CDC algorithms, with comparable or higher
deduplication efficiency.

The rest of paper is organized as follows. In Section II, we
present the background and motivation for this research. We
describe the detailed design and implementation of our AE
algorithm and analyze some of its key properties in Section
III. We present the experimental setup and evaluation results
in Section IV and conclude the paper in Section V.

II. BACKGROUND AND MOTIVATION
In this section, we first provide the necessary background

for the AE research by introducing the challenges facing the

existing CDC algorithms, and then motivate our research by
analyzing our key observations.

A. Background
The Rabin fingerprint [14] based CDC algorithm (Rabin)

was first used to eliminate redundant network traffic [17]. It
runs a sliding-window hash along the byte stream, declaring
a chunk boundary whenever the k-lowest-order bits of the
hash are equal to a pre-determined value. The Rabin algorithm
often imposes a minimum and a maximum threshold on the
chunk size to avoid chunks being too short or too long. This
is because very short chunks imply more fingerprints to be
stored and processed and thus not cost-effective, while very
long chunks reduce the deduplication efficiency. Neverthe-
less, Rabin suffers from two major drawbacks, namely, its
time-consuming fingerprint computation that results in low
chunking throughput and its large chunk size variance that
reduces deduplication efficiency. Recognizing the impact of
the chunk-size variance on deduplication efficiency, Eshghi
et al. [11] proposed the TTTD algorithm to improve Rabin’s
deduplication efficiency. To reduce the chunk-size variance, the
TTTD algorithm introduces an additional backup divisor that
has a higher probability of finding cut-points. When it fails
to find a cut-point using the main divisor within a maximum
threshold, it returns the cut-point found by the backup divisor,
if any. If no cut-point is found by either of the divisors, it
returns the maximum threshold. However, adding an additional
divisor decreases the chunking throughput, meaning that the
TTTD algorithm aggravates Rabin’s performance bottleneck.

MAXP [20], [10] is a state-of-the-art CDC algorithm,
which is first used in remote differential compression of files.
Unlike Rabin that must compute a hash first, the MAXP
algorithm treats the bytes directly as digits, which helps reduce
the computational overhead. MAXP attempts to find the strict
local extreme values in a fixed-size symmetric window, and
then uses these points as chunk boundaries to divide the
input stream. The main disadvantages of this strategy is that
when declaring an extreme value, the algorithm must move
backwards by a fixed-size region to check if there is any
value greater (if the extreme value is the maximum value)
than the value of the current position being examined. This
backtracking process requires many extra conditional branch
operations and increases the number of comparison operations
for each byte examined. Since MAXP needs to check every
byte in the input data stream, any additional conditional branch
operations result in a decreased chunking throughput.

EndRE [21] proposes an adaptive Samplebyte algorithm
for declaring fingerprint. The Samplebyte algorithm combines
the CDC algorithm’s robustness to small changes in content
with the efficiency of the FSC algorithm. It uses one byte to
declare a fingerprint and stores 1/p representative fingerprints
for content matching, where p is the sampling period. To avoid
over-sampling, it skips p/2 bytes when a fingerprint has been
found. By increasing p, the algorithm can skip more bytes and
thus improve the chunking throughput. However, the design
principle of Samplebyte dictates that the sampling period p be
smaller than 256 Bytes, which means that the expected average
chunk size must be smaller than 256 Bytes when used in the
chunk-level deduplication. Unfortunately, a chunk granularity
of 256 bytes or smaller is too fine to be cost efficient or
practical, which makes the Samplebyte algorithm inappropriate
for coarse-grained chunk-level deduplication.

2015 IEEE Conference on Computer Communications (INFOCOM)

1338

TABLE I. PROPERTIES OF THE STATE-OF-THE-ART CDC
ALGORITHMS.

Properties Rabin TTTD Samplebyte MAXP AE
Content Defined Yes Yes Yes Yes Yes

Computational overheads High High Low High Low
Chunk size variance High Low High Low Low
Ability to eliminate
low-entropy strings Low Middle Low None High

Limitations on chunk size Yes Yes Yes No No

B. Challenges and Motivation
Chunk-level deduplication is one of the main deduplication

methods due to its ability to exploit cross-file redundancy.
Because of higher deduplication efficiency than FSC [23],
CDC algorithms are preferred in chunk-level deduplication.
However, the low chunking throughput of the existing CDC
algorithms hinders their wider applications because of the
deduplication performance bottleneck [19], [24]. To alleviate
the performance bottleneck and increase the throughput of the
deduplication system, P-Dedup [19] harnesses the idle CPU
resources to pipeline and parallelize the compute-intensive pro-
cesses. StoreGPU [24] and Shredder [18] exploit underutilized
GPU resources to improve the chunking throughput. However,
these schemes achieve their performance improvement from
either additional resources or parallelization of the deduplica-
tion processes, but not from improving the chunking algorithm
itself.

Table I compares the state-of-the-art CDC algorithms by
summarizing their key properties. The Rabin algorithm has
the problems of high computational overheads and high chunk
size variance. The TTTD algorithm improves the problem of
high chunk size variance but lowers the chunking throughput.
The MAXP algorithm is computationally expensive and cannot
eliminate low-entropy strings. The Samplebyte algorithm is
confined to the fine-grained deduplication (the expected av-
erage chunk size is smaller than 256 Bytes) and has limited
applicability. In addition, Samplebyte is not strictly content-
defined, since its strategy of skipping p/2 bytes (a half of the
expected average chunk size) makes many chunk boundaries
position-dependent, which will result in the boundaries-shift
problem.

The various problems facing the state-of-the-art CDC al-
gorithms summarized in Table 1 motivate us to propose a
new chunking algorithm to overcome these problems. In fact,
our experimental observation finds that detecting local extreme
values in an asymmetric window can not only deal with the
boundaries-shift problem for Content-Defined Chunking, but
also increase the chunking throughput and detect low-entropy
strings. As a result, our proposed Asymmetric Extremum
(AE) chunking algorithm, by using an asymmetric window
to find the local extreme value for chunking as elaborated in
the next section, is able to remove the chunking-throughput
performance bottleneck of deduplication, and better satisfy the
key desirable properties of CDC algorithm to achieve high
deduplication efficiency and performance.

III. ASYMMETRIC EXTREMUM CHUNKING ALGORITHM
In this section we describe the design of the AE chunking

algorithm and analyze its key properties.

A. The AE Algorithm Design
In AE, a byte has two attributes: position and value. Each

byte in the input data stream has a position number, and the
position of the nth byte (1 6 n 6 stream length) in the

Start from B, B is the first byte of the input data stream.

B

Step 1: Input data stream

B M

B M C

M is extreme point if :

1) The interval [B, N] is empty, or the value of M is greater than the values of

all bytes in the interval [B, N].

2) The value of M is no less than the values of all bytes in the interval [D, C].

Step 2: Searching for maximum point

Step 3: Declaring chunk boundary

B'

CD

Return C as cut-point. B' is the first byte of the remaining input stream.

D

N

N

Fig. 1. The workflow of the AE chunking algorithm, where N, M, D in the
figure are neighboring positions, and so are the positions of C and B′.

stream is n. Each interval of S consecutive characters/bytes
in the input data stream is treated as a value. The value of
every such interval in the data stream is associated with the
position of the first byte of the S consecutive characters/bytes
that constitute this value. Therefore, each byte in the stream,
except for the very last S − 1 bytes, has a value associated
with it.

Definition 1: Given an input data stream, it is defined to
start from the leftmost byte. If a byte A is on the left of byte
B, A is said to be before B, and B appears after A.

Definition 2: Given a byte P in the input data stream, the
w consecutive bytes immediately after P are defined to be the
right window of P , and w is referred to as the window size.

The extreme value in the AE algorithm can be either the
maximum value or the minimum value. For convenience of
discussion, in what follows in this section, we assume that the
extreme value is the maximum value. Starting from the very
first byte of the stream or the first byte after the last cut-point,
AE attempts to find the first byte of the input data stream that
satisfies the following two conditions.
• It is the first byte or its value is greater than the values

of all bytes before it.
• Its value is not less than the values of all bytes in its

right window.
The first byte found to meet these conditions is referred to as
a maximum point. These two conditions make sure that the
maximum point has the local maximum value. There are two
further implications. First, this first byte can be a maximum
point. Second, AE allows for ties between the byte being
examined and bytes in the right window. If a maximum point
has been found, AE returns the rightmost byte in its right
window as a cut-point. The workflow of AE is described
in Figure 1. Algorithm 1 below provides a more detailed
implementation of the AE chunking algorithm.

From the algorithm description above, we know that the
minimum chunk size of AE is w + 1. In what follows we
discuss the average chunk size of AE.

Theorem 1: Consider a byte in position p in the current
input data stream, starting from the first byte after the last cut
point (i.e., excluding the bytes in the data stream that have
already been chunked), the probability of this byte being a
maximum point is 1/(w + p), where w is the window size.

2015 IEEE Conference on Computer Communications (INFOCOM)

1339

Algorithm 1 Algorithm of AE Chunking
Input: input string, Str; left length of the input string, L;
Output: chunked position (cut-point), i

1: Predefined values: window size, w; length of interval S;
2: function AECHUNKING(Str, L)
3: i← 1
4: max.value← Str[i].value
5: max.position← i
6: i← i+ 1
7: while i < L do
8: if Str[i].value <= max.value then
9: if i = max.position+ w then

10: return i
11: end if
12: else
13: max.value← Str[i].value
14: max.position← i
15: end if
16: i← i+ 1
17: end while
18: return L
19: end function

Proof: We assume that the content of real data is random,
an assumption that is reasonably justified by our experimental
evaluation and previous work such as MAXP [20]. According
to the conditions set for a maximum point, if byte p is a
maximum point, it should have the maximum value in the
interval [1, p+w]. In this interval, each byte is equally likely
to be of the maximum value. Thus, the probability of byte p
being the maximum point is 1/(w + p). Note that if position
p is the maximum point, the chunk size will be p+ w.
Now we determine the range of possible positions of the
maximum point, namely, the position x that makes the cu-
mulative probability equal to 1. According to Theorem 1, we
can compute the position x using the following equation:

1

w + 1
+

1

w + 2
+

1

w + 3
+ · · ·+ 1

w + x
= 1.

The left side of this equation is approximately equal to ln(w+
x)− lnw. Thus, the value of x is approximately (e− 1) ∗ w.
For each possible position, the expected chunk size is equal to
the probability of being the maximum point multiplying by the
chunk size if it is the maximum point. Finally, we compute the
expected average chunk size by adding the expected chunk size
of all possible positions, and the result, namely, the expected
average chunk size, is (e− 1) ∗ w.

B. Properties of the AE algorithm
In this section, we analyze the AE algorithm in regards to

the desirable properties of CDC algorithms listed in Section I.

Chunk one

B1 E1 C1 B2 E2 C2 B3

Chunk two

E3 C3

Chunk three

Fig. 2. An example of efficiency loss.

1) Content defined: The MAXP algorithm considers a byte
with the local maximum value a chunk boundary. Therefore,
any modifications within a chunk, as long as they do not

TABLE II. COMPUTATIONAL OVERHEADS OF THE THREE
ALGORITHMS. p IS THE EXPECTED AVERAGE CHUNK SIZE.

Algorithm Computational overhead per byte scanned

Rabin 1 OR, 2 XORs, 2 SHIFTs, 2 ARRAY LOOKUPs,
1 CONDITIONAL BRANCH

MAXP
2 MOD, 2 − 1

p COMPARISONs,
5 + 1

p CONDITIONAL BRANCHes
AE 1 COMPARISON, 2 CONDITIONAL BRANCHes

A

Fixed size Fixed size

M CB D

F

Input data stream

Variable size Fixed size

N H IG

(a) MAXP

(b) AE

E

Input data stream

Fig. 3. Illustration of the key difference between the MAXP and AE
algorithms, where B, M, C are neighboring positions, so are the positions
of D and E and positions of G, N, and H.

replace the local maximum value, will not affect the adjacent
chunks, since the chunk boundaries will simply be re-aligned.
Unlike MAXP, the AE algorithm returns the wth position
after the maximum point as the chunk boundary. It puts the
maximum points inside the chunks instead of considering them
as chunk boundaries. This strategy may slightly decrease the
deduplication efficiency, but AE is still content defined since
the maximum points inside the chunks can also re-align the
chunk boundaries.

Take Figure 2 for example, E1, E2, E3 are the three
maximum points, C1, C2, C3 are the cut-points of the three
corresponding chunks. If there is a modification (insertion or
deletion) in the interval [B1, E1) in Chunk 1, Chunk 2 will not
be affected since the chunk boundary will be re-aligned by the
maximum point E1. If the modification is in the interval (E1,
C1], the starting point of Chunk 2 will be changed, and E2 will
re-align the boundary to keep Chunk 3 from being affected. If
a sequence of consecutive chunks has been modified, the loss
of efficiency is determined by the position of the modification
in the last modified chunk. If the modification is before the
maximum point, there is no efficiency loss. Otherwise, only
one duplicate chunk that is immediately after this modified
region will be affected. In fact, the loss of deduplication
efficiency is small since the modifications are often localized
to one or a very small number of regions [2]. In addition,
the deduplication efficiency is also determined by many other
factors, such as chunk-size variance and the ability to eliminate
low-entropy strings. As we will see shortly, AE’s ability to
eliminate low-entropy strings and reduce chunk-size variance
has more than compensated for this relatively small loss of
deduplication efficiency.

2) Computational overheads: Table II shows the compu-
tational overheads of the three algorithms, AE, MAXP and
Rabin. As shown in the table, the Rabin algorithm needs
1 OR, 2 XORs, 2 SHIFTs and 2 ARRAY LOOKUPs per
byte examined to compute the fingerprints and one conditional
branch to judge the chunk boundaries. While both the MAXP
and AE algorithms use comparison operations to find the local
maximum values, their strategies are quite different and it is
this difference that makes AE much faster than MAXP. Figure

2015 IEEE Conference on Computer Communications (INFOCOM)

1340

3 shows the difference between the two algorithms. As shown
in the figure, MAXP finds the maximum values in a fixed-size
window [A, D]. If the byte M that is in the center of this
window has the maximum value in the window, its value must
be strictly greater than that of any byte in both regions of [A,
B] and [C, D]. Assuming that all bytes in the window [A, D]
have been scanned and M has the maximum value and has
been returned as a cut-point, most of the bytes in region [C,
D] must be scanned again when MAXP processes the byte E.
This means that MAXP needs an array to store the information
of the bytes in the fixed-size region immediately before the
current byte. Moreover, it requires two modular operations to
update the array, and 2− 1

p comparison and 5+ 1
p conditional

branch operations to find the local maximum value.
In contrast, AE only needs to find the maximum value

in an asymmetric window [F, I], which includes a fixed-size
region [H, I] and a variable-size region [F, G], whose size
is determined by the content of the input data stream. As
a result, we only need to store a candidate maximum point
and the position of the candidate maximum point, and do
not need to backtrack to declare the local maximum value.
Therefore, AE only needs one comparison and 2 conditional
branch operations. Note that the numbers of comparisons
and conditional branches of MAXP and AE are based the
descriptions of the algorithms ([20], [22] for MAXP and this
section for AE), whose derivations are omitted here due to
space constraint. Clearly, AE requires much fewer operations,
particularly the time-consuming conditional branch and table
lookup operations, than the other two algorithms.

3) Chunk size variance: In this section we analyze the
chunk size variance of the AE algorithm. We use the proba-
bility of a long region not having any cut-point to estimate the
chunk size variance.

Theorem 2: AE has no maximum point in a given range, if
and only if in each interval of w consecutive bytes in this range,
there exists at least one byte that satisfies the first condition
of the maximum point, namely, it is the first byte or its value
is greater than the values of all bytes before it.

Proof: In this range, if there exists one byte in each
interval of w consecutive bytes whose value is greater than
the values of all bytes before it, then the second condition
of the maximum point, namely, its value is not less than the
values of all bytes in its right window, will never be satisfied.
In other words, there is no maximum point in the range.
Given an interval [cw + a + 1, cw + a + w], where c is a
constant, the probability of no byte satisfying the first condition
of maximum point is:

w∏
i=1

(1− 1

a+ i
) =

a

a+ w
.

So the complementary probability, that there exists at least
one byte satisfying the first condition of the maximum point,
is w/(w + a). Divide the interval into subintervals with the
length of w and then number them from 1 to m. Consider
the pth subinterval [(p − 1)w + 1, pw]. The probability of no
maximum point in it is:

w

(p− 1) ∗ w + w
=

1

p
.

Multiplying the probabilities of the continuous m subintervals,
we have 1

m! . Given that the average chunk size of AE is (e−

TABLE III. PROBABILITY OF NO CUT-POINTS IN A REGION OF LENGTH
m× average-chunk-size.

m AE Rabin 0 Rabin 0.25 MAXP
1

[(e−1)∗m]!
e−m e−(k+1)m 22m

(2m)!

2 0.0938 0.1353 0.0907 0.6667

3 0.0064 0.0498 0.0273 0.0889

4 2.56 ∗ 10−4 0.0183 0.0082 0.0063

5 6.85 ∗ 10−6 0.0067 0.0025 2.82 ∗ 10−4

6 1.32 ∗ 10−7 0.0025 7.47 ∗ 10−4 8.55 ∗ 10−6

7 1.94 ∗ 10−9 9.12 ∗ 10−4 2.25 ∗ 10−4 1.88 ∗ 10−7

8 2.25 ∗ 10−11 3.35 ∗ 10−4 6.77 ∗ 10−5 3.13 ∗ 10−9

1)∗w, the probability of no maximum point in m consecutive
chunks of average chunk size becomes:

P (AE) =
1

[(e− 1) ∗m]!
,

here m should be more than 1. Next we compare the prob-
abilities of very long chunks among the AE, MAXP and
Rabin algorithms. Table III shows formulas to calculate the
theoretical probability of no cut-points in a region of length
m× average-chunk-size [20] and lists such probabilities when
m = 2, 3, · · · , 8 for the three algorithms, where Rabin 0
represents the Rabin algorithm without minimum threshold,
and Rabin 0.25 represents Rabin with a minimum threshold
on chunk size, and the ratio of the minimum threshold to the
expected average chunk size is 0.25. As can be seen from the
table, the probability of generating exceptionally long chunks
by AE is much lower than the other two algorithms, which
also means that AE has smaller chunk-size variance.

4) Dealing with low-entropy strings: Ties between the
byte being examined and the bytes in the right window may
appear in the input data stream. If a tie happens to be between
two local maximum values, we can break the tie by one of the
following two strategies: (1) selecting the first maximum value
or (2) going beyond the right window to search for a strictly
maximum value. Strategy (1) can help identify and eliminate
low-entropy strings. AE allows for ties in its right window and
the maximum point can be the first byte, so that it can divide
the low-entropy strings into fixed-size chunks whose size is
w + 1. On the other hand, Strategy (2), which is used in the
MAXP algorithm, will lead the algorithm to miss detecting and
eliminating low-entropy strings. Note that the AE algorithm
cannot detect all low-entropy strings. If the length of a low-
entropy string is greater than 2w + 2, then AE can identify a
part of it. Furthermore, Strategy (2) requires more conditional
branch operations in finding the maximum points. For these
reasons, we chose Strategy (1) for AE.

5) The limitations on chunk size: AE’s strategy of finding
the maximum values implies that the length of its chunk will
be greater than or equal to w+1, so that an artificial minimum
limitation on chunk size is unnecessary. In addition, according
to Table III, the probability of AE generating exceptionally
long chunks is extremely small. This, combined with the fact
that AE is able to find cut-points in low-entropy strings, makes
it unnecessary for AE to impose the maximum threshold on
chunk size, a point that is amply demonstrated in the detailed
sensitivity study of the AE algorithm in the next section.

IV. PERFORMANCE EVALUATION
In this section, we present the experimental evaluation of

our AE algorithm in terms of multiple performance metrics. To

2015 IEEE Conference on Computer Communications (INFOCOM)

1341

characterize the benefits of AE, we also compare it with two
state-of-the-art CDC algorithms, namely, Rabin and MAXP.

A. Evaluation Setup
We implemented the AE and MAXP chunking algorithm in

an open-source deduplicaiton prototype system called Destor
[25] on the Ubuntu 12.04.2 operating system running on an
8-core Intel i7 2.8GHz system with 16GB memory and 1TB
7200rpm hard disk. The deduplication system uses the SHA-1
hash function to generate chunk fingerprints for the detection
and elimination of duplicate chunks. Note that we did not use
a simpler but weaker hash function such as Jenkins [26] to
generate fingerprints or a limited cache to store the fingerprints
when processing network traffic since we are most concerned
with the performance of the chunking algorithm in this paper.

1) Datasets: To evaluate the three CDC algorithms, we use
the following four real-world datasets.

Network Traffic dataset: The network traffic in this dataset
was collected using wireshark from our research laboratory
consisting of 17 IP addresses, 11 for desktop computers and 6
for laptops. All laptops used WiFi connectivity to access the
network. The trace collection spanned a period of 7 days and
yielded about 53G of data.

Similar Movie-Files dataset: This dataset is composed of
24 movie files constituting 12 different movies. In order to
collect this dataset, we first chose 6 popular and 6 unpopular
movie titles according to the IMDB rating [27], and then
divided them into three groups, each of which included 2
popular and 2 unpopular titles. Finally, we collected two
different movie files for each title. In the first group, resolutions
of the two movie files of each title are different. In the other
two groups, the differences lie in the subtitle and dubbing
respectively. Note that the two files of each title have the same
file format since there is almost no duplicate data between two
videos of different format. The total size of this dataset is 31G.

TAR dataset: This dataset includes 20 versions of GCC,
35 versions of GLIB, 15 versions of GDB, 10 versions of
EMACS, and 40 versions of Linux kernels. Each version of
these free software was packaged as a tar file. The total size
of this dataset is 32G.

VMDK dataset: This dataset consists of 1.85T of 125
backups of an Ubuntu virtual machine. Since all backups are
full backup, there exists a large amount of duplicate content
in this dataset.

The first dataset represents the typical network traffic. The
second and third datasets represent common shared network
resources. The third and fourth datasets are very common
in backup systems. And the last three datasets respectively
represent the data of low, middle and high redundancy.

2) Evaluation Methodology: To better evaluate the per-
formance of AE chunking algorithm, the Rabin and MAXP
algorithms were also implemented for comparisons. Every
dataset was tested several times by each chunking algorithm
with different average chunk sizes. For the Rabin algorithm, we
still use the typical configuration Rabin 0.25 (see Section III).
We also impose a maximum threshold on chunk size whose
value is 8 times the expected average chunk size. Because
of the minimum threshold, the real average chunk size of
Rabin will be greater than the expected average chunk size.
It is approximately equal to the expected average chunk size
plus the minimum threshold. For the sake of fairness, for each

test, we first processed using Rabin to get the real average
chunk size, and then adjusted the real average chunk size to
the same value when using other algorithms. For convenience
of discussion, Rabin’s expected average chunk sizes are used
as labels to distinguish different tests on each dataset.

Since the AE algorithm is extreme-value based, the extreme
value can be either maximum value or minimum value. As
such, it is necessary to find out how sensitive is the AE
algorithm to the choice of the form of extreme value, maximum
or minimum. Therefore, we implemented both versions of
AE, AE MAX and AE MIN, to carry out a sensitivity study.
In addition, in order to experimentally verify our theoretic
analysis and conclusion that it is not necessary to impose a
maximum threshold on AE, as summarized in Table III, we
also evaluated AE’s sensitivity to the maximum chunk-size
threshold by implementing the same threshold on AE as that
imposed on Rabin, which leads to two more AE versions of
AE MAX T and AE MIN T.

B. Deduplication efficiency
In this section, we evaluate the deduplication efficiency of

our algorithm. We use deduplication elimination ratio (DER),
which we define as the ratio of the size of input data to the
size of data need to be actually stored/transferred, to measure
the deduplication efficiency. Therefore, the greater the value
of DER is, the higher the deduplication efficiency is.

1) Sensitivity of AE to Design Parameters: Figure 4 shows
AE’s sensitivity to the key design parameters, i.e., the form of
extreme value (maximum vs. minimum) and the necessity of
imposing a maximum chunk-size threshold, in terms of dedu-
plication efficiency across the four datasets under AE MAX,
AE MIN, AE MAX T and AE MIN T. Consistent with our
theoretic analysis of Table III, the experimental results show
that the AE without a maximum threshold achieves nearly i-
dentical deduplication efficiency as the AE with it. Specifically,
the gains in deduplication efficiency from adding the maximum
threshold are negligibly small (i.e., on average 0.004%). But
for some datasets, it actually reduces the deduplication effi-
ciency, since the cut-points declared by AE with a maximum
threshold is no longer strictly content-defined but position
dependent. For example, on the Tars dataset when using the 4K
expected average chunk size (Figure 4(c)), the DER values of
AE MIN and AE MIN T are 1.9319 and 1.9259 respectively,
a reduction of 0.3%.

Another key observation is that the deduplication efficiency
of AE MAX and AE MIN differs across datasets. On the
network traffic dataset (Figure 4(a)), AE MIN obtains higher
deduplication efficiency than AE MAX. On the movies dataset
(Figure 4(b)), their performance is comparable. While on the
remaining two datasets (Figures 4(c) and 4(d)), AE MAX
outperforms AE MIN. Recall that, just like MAXP, the AE
algorithm treats the bytes directly as digits. The deduplica-
tion efficiency of AE MAX and AE MIN depends on the
frequency and the encoding of the characters in the input data
stream. We also tested other datasets (not shown here for space
considerations), and we found that AE MAX can obtain the
same or higher deduplication efficiency than AE MIN on all
datasets except the Network traffic dataset.

2) Comparison of DER among AE, Rabin, and MAXP: In
this comparison, based on the AE sensitivity study above, we
used AE MIN in the network traffic dataset and AE MAX in
the others. We also tested the MAXP algorithm using either

2015 IEEE Conference on Computer Communications (INFOCOM)

1342

256B 512B 1KB
0

1

2

3

D
ER

Expected average chunk size

 AE_MAX_T AE_MAX
 AE_MIN_T AE_MIN

(a) Network Traffic

512B 1KB 2KB
1.0

1.5

D
ER

Expected average chunk size

 AE_MAX_T AE_MAX
 AE_MIN_T AE_MIN

(b) Movies

4KB 8KB 16KB
1.2

1.5

1.8

2.1

D
E

R

Expected average chunk size

 AE_MAX_T AE_MAX
 AE_MIN_T AE_MIN

(c) Tars

4KB 8KB 16KB
0

5

10

15

20

25

30

D
ER

Expected average chunk size

 AE_MAX_T AE_MAX
 AE_MIN_T AE_MIN

(d) VMDK

Fig. 4. Deduplication efficiency of AE. AE MAX and AE MIN respectively represent AE using maximum and minimum as extreme values. AE MAX T and
AE MIN T denote the AE MAX and AE MIN with a maximum threshold.

0 100 200 300 400 500 600 700
1

2

3

4

5

D
E

R

Real average chunk size (Bytes)

 Rabin_0.25
 MAXP
 AE

(a) Network Traffic

400 800 1200 1600 2000 2400 2800
1.32

1.36

1.40

1.44

1.48

D
E

R

Real average chunk size (Bytes)

 Rabin_0.25
 MAXP
 AE

(b) Movies

0 9000 18000 27000
1.4

1.6

1.8

2.0

2.2

2.4

2.6

D
E

R

Real average chunk size (Bytes)

 Rabin_0.25
 MAXP
 AE

(c) Tars

0 5000 10000 15000 20000 25000
12

18

24

30

36

D
E

R

Real average chunk size (Bytes)

 Rabin_0.25
 MAXP
 AE

(d) VMDK

Fig. 5. Deduplication efficiency of the three chunking algorithms on the four real-world datasets. Rabin 0 represents the Rabin algorithm without imposing a
minimum chunk-size threshold.

TABLE IV. LOW-ENTROPY STRINGS ELIMINATION RATIO OF THE THREE ALGORITHMS.

(a) Expected average chunk size on the four datasets are 256B,
512B, 4KB and 4KB respectively.

Algorithm Network Traffic Movies Tars VMDK

Rabin 0.25 0.003% 0 0 2.28%

MAXP 0 0 0 0

AE 0.016% 0.009% 0.006% 6.08%

(b) Expected average chunk size on the four datasets are 512B,
1KB, 8KB and 8KB respectively.

Algorithm Network Traffic Movies Tars VMDK

Rabin 0.25 0.002% 0 0 1.27%

MAXP 0 0 0 0

AE 0.009% 0.002% 0.003% 3.31%

the maximum or the minimum value on the four datasets
(not shown here for space considerations), and the results are
similar to and consistent with those of AE. Therefore, we use
MAXP with minimum value on the Network Traffic dataset
and use the maximum value on the others. Figure 5 shows
the results of this comparison. In the figure we can see that
AE achieves comparable deduplication efficiency to MAXP
on the first two datasets, and both AE and MAXP outperform
Rabin in the DER measure. On the third dataset (Figure 5(c)),
AE achieves almost the same efficiency as Rabin, and their
deduplication efficiency are slightly higher than MAXP. On
the last data set (Figure 5(d)), AE achieves higher DER than
the other two algorithms. The main reason for AE’s superior
DER performance is its ability to detect and eliminate more
low-entropy strings and smaller chunk size variance.

3) Benefits from detecting low-entropy strings: Here we
evaluate and discuss the benefits brought by the AE algorithm
with its ability to detect the low-entropy strings. Rabin can
also detect some low-entropy strings with the help of the
maximum threshold when the low-entropy strings are long
enough. However, MAXP does not have this capability. Table
IV shows the low-entropy strings elimination ratio (LER),
which we define as the ratio of the size of the low-entropy

strings that can be eliminated to the size of input data. As
shown in the table, AE eliminates more low-entropy strings
than Rabin and MAXP. For the first three datasets, the benefit
of low-entropy strings detection is not obvious, since there are
only very small amounts of such strings in these datasets. But
on the last dataset, our algorithm detects 72G and 38.6G more
low-entropy strings than Rabin when the expected average
chunk sizes are 4KB and 8KB respectively. Note that all
detected low-entropy strings have the same length. For Rabin,
the length is equal to Rabin’s maximum chunk-size threshold.
For AE, it is equal to w+1. Therefore, all of these low-entropy
strings can be eliminated directly by chunk-level deduplication.

4) Chunk size variance: Another reason for AE’s superior
DER performance is its smaller chunk size variance than other
two algorithms. We have proved it in theory in Table III, here
we test it using the real-world datasets. We selected a gcc
file at the version of 4.7.0 in the TAR dataset, and processed
it using the three algorithms with the expected average chunk
size of 4KB, 8KB, and 16KB respectively. Figure 6 depicts the
distribution. In this figure we can see that AE achieves more
uniform chunk-size distribution, which also means that AE has
smaller chunk-size variance than the other two algorithms.

2015 IEEE Conference on Computer Communications (INFOCOM)

1343

0 5 10 15
0

5

10

15

20

25

 Rabin
 MAXP
 AE

Pe

rc
en

ta
ge

 o
f c

hu
nk

s
(%

)

KB

(a) Expected average chunk size is 4KB

0 5 10 15 20 25
0

2

4

6

8

10

12

14

16

 Rabin
 MAXP
 AE

Pe
rc

en
ta

ge
 o

f c
hu

nk
s

(%
)

KB

(b) Expected average chunk size is 8KB

0 10 20 30 40 50 60
0

2

4

6

8

Pe
rc

en
ta

ge
 o

f c
hu

nk
s

(%
)

KB

 Rabin
 MAXP
 AE

(c) Expected average chunk size is 16KB

Fig. 6. Distribution of the chunk size for the three algorithms. Expected average chunk sizes are 4KB, 8KB and 16KB respectively.

Network Traffic Movies Tars VMDK
0

100

200

300

400

500

600

700

800

900

1000

1100

T
hr

ou
gh

pu
t (

M
B

yt
es

/s
)

 Rabin_0.25 MAXP AE_MAX_T
 AE_MAX AE_MIN_T AE_MIN

Fig. 7. Chunking throughput of the three algorithms on the four datasets.

C. Chunking throughput
Figure 7 compares the chunking throughput among the

AE, Rabin, and MAXP algorithms on the four datasets. The
expected average chunk sizes used on the four datasets are
256B, 1KB, 4KB, and 16KB respectively, which serves to test
the sensitivity of the algorithms to chunk size. In Figure 7, we
draw the following observations. First, imposing a maximum
threshold reduces the chunking throughput as shown in the
results of AE with/without a maximum chunk-size threshold
in Figure 7. This is because imposing a maximum threshold
on the chunk size requires one more conditional branch per
byte scanned. Combining this observation with the earlier
evaluation of deduplication efficiency and sensitivity study of
AE, we can draw the conclusion that it is unnecessary to
impose a maximum chunk-size threshold on AE.

Second, the AE algorithm outperforms the other two al-
gorithms in terms of the chunking throughput. AE achieves a
throughput of 1026 MBytes/s, which is about 3 times higher
than the other two algorithms. Third, the chunking throughput
of the AE algorithm improves as the average chunk size
increases. To further measure the sensitivity of the chunking
throughput to average chunk size and the dataset, we tested
the four datasets using both AE MAX and AE MIN. For each
test, we adjusted the real average chunk size range from 250B
to 20KB. Figure 8 presents the results of our tests. In this fig-
ure, we can see that the chunking throughput increases sharply
when the real average chunk size is less than 2KB, and after
that, the increase in chunking throughput gradually becomes

0 5 10 15 20
700

750

800

850

900

950

1000

1050

th
ro

ug
hp

ut
 (M

By
te

s/
s)

Real average chunk size (KB)

 NetworkTraffic_max
 Movies_max
 Tars_max
 VMDK_max
 NetworkTraffic_min
 Movies_min
 Tars_min
 VMDK_min

Fig. 8. Sensitivity of chunking throughput to real average chunk size.

slow. The figure also shows that the chunking throughput of
AE is largely unaffected by the type of dataset. In addition, the
chunking throughput of MAXP has a small improvement as
the average chunk size increases, from 316 to 398 MBytes/s.
The chunking throughput of Rabin is largely independent of
the chunk size.

D. Bytes saved per second
In this section, we use the metric, called ”Bytes Saved Per

Second” (BSPS) [28], which considers both the deduplication
efficiency and the chunking throughput performance, to mea-
sure the efficiency of different CDC algorithms. BSPS can be
calculated using following expression.

BSPS =
the size of deduplicated data

the size of the input stream
× throughput

Figure 9 plots the BSPS of the deduplication systems employ-
ing the AE, MAXP, and Rabin based chunking algorithms
on the four datasets. As can be seen from the figure, the
Rabin algorithm achieves comparable BSPS performance to
the MAXP algorithm, while the AE algorithm improves the
BSPS performance of the state-of-the-art CDC algorithms by
a factor of 2.6 (2.6x) on average. The main reason why AE
achieves the highest performance of BSPS is its fast and
efficient chunking scheme that finds the extreme value in
an asymmetric sliding window without having to backtrack,
which has the potential to significantly speedup the process of
redundancy elimination in data-intensive network and cloud
applications.

2015 IEEE Conference on Computer Communications (INFOCOM)

1344

0 100 200 300 400 500 600 700
0

100

200

300

400

500

B

S
P

S
 (M

B
yt

es
/s

)

Real average chunk size (Bytes)

 Rabin_0.25
 MAXP
 AE

(a) Network Traffic

0 1000 2000 3000
80

120

160

200

240

280

B
S

P
S

 (M
B

yt
es

/s
)

Real average chunk size (Bytes)

 Rabin_0.25
 MAXP
 AE

(b) Movies

0 10000 20000 30000

200

400

600

B
S

P
S

 (M
B

yt
es

/s
)

Real average chunk size (Bytes)

 Rabin_0.25
 MAXP
 AE

(c) Tars

0 5000 10000 15000 20000 25000
200

400

600

800

1000

B
S

P
S

 (M
B

yt
es

/s
)

Real average chunk size (Bytes)

 Rabin_0.25
 MAXP
 AE

(d) VMDK

Fig. 9. Deduplicated data per second achieved by the three algorithms.

V. CONCLUSION
We presented AE, a new CDC algorithm that effectively

employs an asymmetric sliding window to find the local
extreme value for fast content-defined chunking. As a result,
AE is shown to have lower computational overheads and thus
higher chunking throughput, smaller chunk size variance, and
the ability to eliminate more low-entropy strings than the
state-of-the-art algorithms. Finally, our experimental evaluation
based on four real-world datasets demonstrates the robust
and superior performance of AE in terms of deduplication
efficiency and chunking throughput over the state-of-the-art
Rabin and MAXP chunking algorithms.

ACKNOWLEDGMENT
The work was partly supported by National Basic Research

973 Program of China under Grant No. 2011CB302301; NSFC
No. 61025008, 61173043, 61232004, and 6140050892; 863
Project 2013AA013203; US NSF under Grants IIS-0916859,
CCF-0937993, CNS-1116606, and CNS-1016609; Fundamen-
tal Research Funds for the Central Universities, HUST, under
Grant No. 2014QNRC019. This work was also supported by
Key Laboratory of Information Storage System, Ministry of
Education, China.

REFERENCES

[1] J. Gantz and D. Reinsel, “The digital universe in 2020: Big data, bigger
digital shadows, and biggest growth in the far east,” IDC iView: IDC
Analyze the Future, 2012.

[2] E. Kruus, C. Ungureanu, and C. Dubnicki, “Bimodal content defined
chunking for backup streams,” in Proc. USENIX FAST, 2010.

[3] W. Xia, H. Jiang, D. Feng, and Y. Hua, “Silo: A similarity-locality
based near-exact deduplication scheme with low ram overhead and high
throughput.” in Proc. USENIX ATC, 2011.

[4] S. Sanadhya, R. Sivakumar, K.-H. Kim, P. Congdon, S. Lakshmanan,
and J. P. Singh, “Asymmetric caching: improved network deduplication
for mobile devices,” in Proc. ACM MobiCom, 2012.

[5] A. Anand, V. Sekar, and A. Akella, “Smartre: an architecture for
coordinated network-wide redundancy elimination,” in Proc. ACM SIG-
COMM, 2009.

[6] A. Tridgell, Efficient algorithms for sorting and synchronization. Aus-
tralian National University Canberra, 1999.

[7] A. Muthitacharoen, B. Chen, and D. Mazieres, “A low-bandwidth
network file system,” in ACM SIGOPS Operating Systems Review,
vol. 35, no. 5, 2001, pp. 174–187.

[8] S. Quinlan and S. Dorward, “Venti: A new approach to archival storage,”
in Proc. USENIX FAST, 2002.

[9] P. Kulkarni, F. Douglis, J. D. LaVoie, and J. M. Tracey, “Redundancy
elimination within large collections of files.” in Proc. USENIX ATC,
2004.

[10] A. Anand, C. Muthukrishnan, A. Akella, and R. Ramjee, “Redundancy
in network traffic: findings and implications,” in Proc. ACM SIGMET-
RICS, 2009.

[11] K. Eshghi and H. K. Tang, “A framework for analyzing and improving
content-based chunking algorithms,” Hewlett-Packard Labs Technical
Report TR, vol. 30, 2005.

[12] S. Schleimer, D. S. Wilkerson, and A. Aiken, “Winnowing: local
algorithms for document fingerprinting,” in Proc. ACM SIGMOD, 2003.

[13] A. El-Shimi, R. Kalach, A. Kumar, A. Ottean, J. Li, and S. Sengupta,
“Primary data deduplication-large scale study and system design.” in
Proc. USENIX ATC, 2012.

[14] M. O. Rabin, Fingerprinting by random polynomials. Center for
Research in Computing Techn., Aiken Computation Laboratory, Univ.,
1981.

[15] W. Xia, H. Jiang, D. Feng, L. Tian, M. Fu, and Y. Zhou, “Ddelta: A
deduplication-inspired fast delta compression approach,” Performance
Evaluation, vol. 79, pp. 258–272, 2014.

[16] W. Xia, H. Jiang, D. Feng, and L. Tian, “Combining deduplication and
delta compression to achieve low-overhead data reduction on backup
datasets,” in Proc. IEEE DCC, 2014.

[17] N. T. Spring and D. Wetherall, “A protocol-independent technique for
eliminating redundant network traffic,” in Proc. ACM SIGCOMM, 2000.

[18] P. Bhatotia, R. Rodrigues, and A. Verma, “Shredder: Gpu-accelerated
incremental storage and computation.” in Proc. USENIX FAST, 2012.

[19] W. Xia, H. Jiang, D. Feng, L. Tian, M. Fu, and Z. Wang, “P-dedupe:
Exploiting parallelism in data deduplication system,” in Proc. IEEE
NAS, 2012.

[20] N. Bjørner, A. Blass, and Y. Gurevich, “Content-dependent chunking
for differential compression, the local maximum approach,” Journal of
Computer and System Sciences, vol. 76, no. 3, pp. 154–203, 2010.

[21] B. Agarwal, A. Akella, A. Anand, A. Balachandran, P. Chitnis,
C. Muthukrishnan, R. Ramjee, and G. Varghese, “Endre: An end-system
redundancy elimination service for enterprises.” in Proc. USENIX NSDI,
2010.

[22] N. S. Bjorner, Y. Gurevich, and D. Teodosiu, “Efficient chunking
algorithm,” 2012, uS Patent 8,117,173.

[23] D. T. Meyer and W. J. Bolosky, “A study of practical deduplication,”
in Proc. USENIX FAST, 2011.

[24] S. Al-Kiswany, A. Gharaibeh, E. Santos-Neto, G. Yuan, and M. Ri-
peanu, “Storegpu: exploiting graphics processing units to accelerate
distributed storage systems,” in Proc. ACM HPDC, 2008.

[25] M. Fu, “Destor: An experimental platform for chunk-level data dedu-
plication,” https://github.com/fomy/destor, 2014.

[26] B. Jenkins, “Hash functions,” Dr Dobb’s Journal, 9707, Sept. 1997.
[27] “IMDb,” http://www.imdb.com/chart/top/, IMDb chart Top 250.
[28] Y. Fu, H. Jiang, N. Xiao, L. Tian, and F. Liu, “Aa-dedupe: An

application-aware source deduplication approach for cloud backup
services in the personal computing environment,” in Proc. IEEE CLUS-
TER, 2011.

2015 IEEE Conference on Computer Communications (INFOCOM)

1345

